Example X: Accessing Ordinary Database Tables using {BillNET}

In addition to supporting access control, {BillNET} provides a generic set of methods for accessing existing database tables. These methods provide an abstract layer between the web pages and the actual database using PHP code libraries. If the underlying database changes, only the service layer in {BillNET} needs to be changed. For this reason, {BillNET} should be the default method for accessing the database.

Version and Applicability

· Version 1.0.1. Revised for {BillNET} Version 0.5.1

· Version 1.0.0. Code was developed and tested for {BillNET} Version 0.5.

Assumptions and Programmer’s Notes

· This example assumes that the following data already exists in the database.

	Database Table “SDM_Announce”

	Id
	Title
	Author

	0
	Parking News
	J. Smith

	1
	Executive Promotion
	Dean's Office, Official

 For information on creating database tables see {reference}.

· In this simple example, we read and render the data directly from the web page. This is only a good idea if the data will never be served from another web page. In production pages, the render layer provides this service, allowing portability and flexibility (in particular, the style and content can be altered easily and uniformly on every page with a single change to the rendering code). To see how to package code for the render layer and use it in a web page see the example {reference}.

· This example does not control access to the data with the {BillNET} authorization system. Production web pages normally use this feature. For examples of checking user ids and securing data see {references}.

· There is a problem with the PHP include statement syntax which causes the program to fail depending exactly where the program is located on disk. The work around patch is to change the include statement in the db_interaction routine (in file db_connect.php) to an absolute path name.

Description

This code creates a web page that opens a single table of information in the database and lists the data on the web browser. The table used in this example simulates a directory of memos for display on the web site and contains records with 3 fields each: a unique identifier, a document title and an author field. The program will display the author and title fields.

Step by Step Instructions

This example contains both HTML tags and PHP code. To view the results of executing the PHP code, the example needs to be in a location accessible to a PHP enabled web server (see {reference}). The code can be checked step by step as it is entered.

Create an HTML Wrapper

Add enough HTML to satisfy the browser and then invoke the PHP processor. At this point, you have a viewable web page, although nothing very interesting is happening. Verify that the page works and can be viewed.

[image: image1]
Connect to the Database

Open a temporary connection to the database. This connection will only last during the processing of this page. (There also persistent connections which remain open until closed.) Since this is PHP code, it is placed inside the PHP tags entered earlier “<?php” … “?>”.

First, the {BillNET} database access library is invoked with an include statement. Then a database interaction object is instantiated with the new operator. Finally, the actual connection is created using a connect call. At this point, data contained in the default database is available to the PHP program.

 <Can this code be tested?>
[image: image2]
Close the Database

Although the connection will automatically be closed when the page completes, it is still good programming practice to close the connection explicitly.

[image: image3]
Read Data

Now that the database connection has been opened, queries can be made against any of the tables in the database. In this case a SQL call is created that selects all the entries in the table “SDM_Announce”. The routine returns the selected records or FALSE if the query fails.

[image: image4]
Write out Data to the Browser

Finally, write the selected data out to the browser a row at a time, with appropriate HTML tags. Note that the individual rows returned from the query are stored in an array where each element of the array contains data from a field. The array entries are is indexed by the field’s name. (The alternative fetch_array call returns an array which uses the field number as an index, counting from zero.)

The htmlspecialchars routine escapes any HTML special characters so they appear as text in the browser. It is a good idea to guard against unexpected HTML commands being passed to the browser when displaying text from other sources.

[image: image5]
Complete Program

[image: image6]
<HEAD></HEAD>

<BODY>

<H1>List a Table using BillNET DB Calls</H1>

<?php

?>

</BODY>

<?php

include_once("code/db/db_connect.php");

$db = new db_interaction();

$conn = $db->connect();

?>

$conn = $db->connect();

$result = $db->query("SELECT * FROM SDM_Announce");

if ($result == FALSE)

echo("Select all from SDM_Announce failed.");

$db->close($conn);

?>

$conn = $db->connect();

$db->close($conn);

?>

$conn = $db->connect();

$result = $db->query("SELECT * FROM SDM_Announce");

if ($result == FALSE)

echo("Select all from SDM_Announce failed.");

echo("<HR>");

while ($row = $db->fetch_assoc_array($result)) {

 echo("Author: " . htmlspecialchars($row["author"]));

 echo("
");

 echo("Title: " . htmlspecialchars($row["title"]));

 echo("
");

 echo("
");

}

echo("<HR>");

$db->close($conn);

?>

<HEAD></HEAD>

<BODY>

<H1>List a Table using BillNET DB Calls</H1>

<?php

include_once("code/db/db_connect.php");

$db = new db_interaction();

$conn = $db->connect();

$result = $db->query("SELECT * FROM SDM_Announce");

if ($result == FALSE)

echo("Select all from SDM_Announce failed.");

echo("<HR>");

while ($row = $db->fetch_assoc_array($result)) {

 echo("Author: " . htmlspecialchars($row["author"]));

 echo("
");

 echo("Title: " . htmlspecialchars($row["title"]));

 echo("
");

 echo("
");

}

echo("<HR>");

$db->close($conn);

?>

</BODY>

� The argument of performance, as in “direct database calls are more efficient”, is only valid when a performance need has been detected. Programmers are notoriously unreliable predictors of performance bottlenecks and adding database specific calls in place of {BillNET} is straightforward. It is strongly recommended that the first priority be on writing portable and maintainable code and leaving performance issues to be addressed as they occur.

