
Stardust
final report
mhci project course, summer
july 30, 2007

SRI Team CALO
Yoko Nakano, Will Haines,
Margaret Szeto, Jing Tien, Brian Ellis

CALO Stardust �

Table of Contents

I. Executive summary	 3

II. Evaluation of the current CALO system	 4

III. Our solution	 5

1. Stardust features and design decisions	 6

a. General features	 6
b. Task pane	 14
c. Notification center	2 4
d. Task viewer	 33
e. Schedule pane	 35
f. Packs	 38
g. CALO suggestions	 41
h. Task automation	 42
i. Learning log	 43
j. Icon well for application access	 43
k. Wizard-of-Oz Implementation	 45

IV. Future steps	 46

V. Appendix	 48

1. Research	 48

a. Literature review	 48
b. Contextual design	 56
c. Personae	 69
d. Use case analysis	 73

2. Ideation and design	 74

a. Brainstorming: initial ideas	 74
b. Concept validation	 78

3. Evaluative user testing	 84

a. Think-alouds with paper prototypes	 84
b. Think-alouds with wizard of Oz prototype	 92
c. Heuristic evaluation	 100

4. Specification Sheet	 104

VI. Bibliography	 117

CALO Stardust �

I. Executive summary

The CALO project (Cognitive Assistant that Learns and Organizes) is intended to permit
project managers and other “overburdened knowledge workers” to offload responsibilities
that are candidates for automation to an autonomous software agent. The intended
user group includes anyone with managerial positions—including CEOs, executives,
and deans of academic departments, and their assistants, secretaries and coordinators in
various organizations. CALO uses an artificial intelligence developed by SRI to support
overburdened knowledge workers through automation, learning and other agent specific
actions. The CMU HCI team was recruited to conduct an extensive user research and
propose an interface design that better matches the goals and workflows of the target users.
Upon examination, the team discovered several problems on the existing interface. It lacked
initial user research, was primarily intended to facilitate the work of AI researchers, lacked
consistency in user interaction, and did not make the benefits of the AI apparent to the end-
users. The research on the target users revealed essential aspects of their work the interface
should support: constant interruption, waiting for others, decentralized information and
difficulty prioritizing. Additionally, the interface needed to take in consideration the facts
AI changed over time, required training and would make mistakes no matter how good to
algorithm is. We aimed to create a solution that solved the problems of the existing interface
and accommodated the needs of our target users as well as the constraints imposed by the
nature of the system.

The CALO Stardust sidebar was built based on four guiding principles: to present
information that needs to be visible at all times, to give easy access to other information that
needs to be visible upon request, to give users ubiquitous control over their workflows, and
to embed training in what users already engage in.

We created CALO Stardust to present information users need in a form of a docked sidebar.
It aims to give users a quick glance of information to help them decide what to do now and
the immediate future. The sidebar also serves as a hub of CALO components and users’
native applications, such as emails and calendar, that are essential in communicating to
others and organizing their tasks. The Stardust sidebar consists of five panes: the notification
center, task pane, schedule pane, CALO suggestion pane, and applications access pane.
The notification center reminds users of upcoming events, important CALO actions, and a
number of important emails waiting to be read. The task pane gathers active, pending and
complete tasks that are automatically ordered by priority by CALO’s AI. The schedule pane
either presents today’s schedule in a block view or a week’s schedule in an agenda view to
help users orient themselves during a day. The CALO suggestion pane presents files and
CALO actions relevant to the window focused by users. Finally, the applications access
pane contains icons for other CALO Stardust components and users’ most frequently used
native applications, namely emails and calendar. CALO Stardust allows users to access more
detailed information of tasks, file associations, training, documentation, and automation
easily from the sidebar in a form of stand-alone windows. This aims to address users’ need
for accessing information on demand.

CALO Stardust �

To address the system’s need for user feedback with minimum disruption to the user’s
workflow, training is embedded throughout the interface as right-click contextual menus.
Additionally, to counteract the highly automated decision makings from the system, such
as automatic prioritization, we allow users to modify all data which subsequently trains the
system as well.

Finally, to accommodate users who can’t afford to lose any screen estate, we designed a
minimized version of the sidebar called the mini-bar that still notifies users of important
reminders and gives access to necessary information. The mini-bar works essentially the
same as the sidebar except that only one pane can be open at a time, and a growl message
would come out for important notifications. This keeps users informed and a click-away
from their essential information.

II. Evaluation of the current CALO system

The CALO system, as designed by SRI, uses a number of specialized artificial intelligence
algorithms to help support DARPA project managers as they organize their work. To
support the impressive breadth of this mission, CALO spans several areas of work including
scheduling, task management, collaboration, and document management among others.
Currently, CALO addresses these topics through a number of separate components, which
are individual applications developed relatively independently. For instance, Towel is the to-
do manager that helps users organize their tasks. PTIME is an automatic meeting scheduler
and negotiator. Mercury or Meeting Assistant records and transcribes conversations to
create notes and action items for the user. All these components are valuable applications
for the current CALO system, but their lack of integration and consistency makes the
CALO system as a whole difficult to use. Furthermore, due to a DARPA-mandated focus
on meeting artificial intelligence benchmarks, SRI was unable to extensively research target
users and their work styles before designing the system.

Currently, CALO’s components are spread out across different applications. This has
become problematic because the interface styles and models of interaction in each
component differ and sometimes even conflict. For instance, in the application Towel,
the user interacts with CALO by manipulating items in a sidebar. However, double
clicking on a task brings up a dialogue where the user now has an instant messaging style
conversation with CALO in order to delegate a task. Over the course of one task, the
interaction technique changes drastically, requiring the user suddenly to interact with an
anthropomorphic representation of CALO. Different still is the year three IRIS interface,
in which CALO resides in a monolithic browser-like window that explicitly contains the
agent’s scope. Here, the user interacts with the CALO AI by answering questions to confirm
whether or not the system was correct in taking some action. Since the intended model
of interaction with CALO changes within components as well as across applications, it is
difficult to leverage knowledge from one application to another.

CALO Stardust �

Another problem with the current system is that there is no consistent way to conceptualize
CALO. It is not clear whether CALO is part of the operating system, a module of the
user’s existing applications, or a standalone application. Currently, the user’s mental model
of CALO is inconsistent as it is presented as an application in PTIME, a browser in IRIS,
and an anthropomorphic agent in Towel. We hope to address these issues by standardizing
how the AI is presented to the user by using the interaction technique most appropriate to
actual user work processes. CALO is already a very powerful and useful implementation of
cutting-edge artificial intelligence; now our team needs to make it clear to end users how to
harness this impressive power.

III. Our solution

Our interface solution, CALO Stardust, presents users with a consistent sidebar application
that is powered by an intelligent agent. The Stardust sidebar would always be visible on
the user’s desktop, providing them easy at-a-glance information and quick access to other
applications. We designed Stardust to leverage some of CALO’s current AI capabilities to
support users’ work in an appropriate manner. Our focus is on assisting target users to
decide what to do right now and using the CALO AI to support their immediate task at
hand. Stardust acts as a hub of many of the user’s tools and communications, and it can
help them to organize their tasks, schedule, and resources. It observes the actions associated
with files, emails, projects, schedule events, and other resources on the computer and learns
the patterns of the user’s work. Using CALO’s powerful AI, we envisioned that Stardust
would make informed decisions about how to help users manage their tasks, incoming
emails, documents, and meetings while continuously improving its decision-making
accuracy. It does all of this while presenting a consistent front end to target users so that
they always know where to go to interact with CALO. Through Stardust, we hope that end
users will be able see that CALO’s ability to learn can potentially benefit their productivity.

Stardust is comprised of five panes: the notification center, task pane, schedule pane,
CALO suggestions pane, and application access pane. The notification center is the central
location for Stardust to display alerts that the CALO AI generates for the user based on
what it infers from the user’s activities. The task pane is a task management system that
helps users determine at a glance what to do “right now.” It lists the user’s tasks by AI-
generated priority, and enables the user to open a separate window called the “task viewer”
for more detailed task organization capabilities. Similarly, the schedule pane is connected
with the user’s calendar application and displays the schedule for today and events up
to five days into the future, facilitating time-sensitive planning of today’s schedule. The
CALO suggestions pane is where Stardust can display actions and resources that it thinks
are associated with the application or document that the user is currently using or editing.
Lastly, there is a set of icons on the bottom of the sidebar that facilitates the access to all the
important applications and CALO components to which the sidebar is connected.

CALO Stardust �

1. Stardust features and design decisions

a. General features

Sidebar
Our contextual inquiries clearly indicate that users interact with two kinds of information
in the problem domain in which Stardust is intended to exist: information that needs to be
visible at all times, and information that should be accessible on demand [V.1.b]. Always
visible information is particularly problematic because there is a constant tension between
the amount of information to be displayed and the amount of screen space consumed. As
such, we considered various alternative interfaces to present the information which needs
to be constantly visible on screen. Among the alternatives we considered are a system tray
icon, a toolbar, a floating window, a monolithic window, and
a sidebar.

A system tray icon has the advantage of consuming
almost no screen space. Tray icons can provide
notifications to the user by means of pop-up balloons
which appear on-the-fly and can be dismissed by
the user or clicked for more information. They
are incapable of any more complex interaction
techniques, however, and any user-initiated
interaction must be performed through the use of a
contextual pop-up menu invoked by right-clicking the icon, a limited and somewhat esoteric
mechanism with very little, if any, affordance. Additionally, the amount of information that
can be constantly visible to the user without undue intrusion is limited to that which can be
displayed in a 16 x 16 pixel icon, which is to say very, very little.

Windows toolbars are a somewhat less common
interactor. An existing component of the CALO
system, CALO Express, uses a toolbar as its sole
point of contact with the user interface. Toolbars are
more flexible than system tray icons in that they can
contain arbitrary controls, and they maintain the ability to be integrated into the Windows
taskbar. Their drawbacks include the requirement that they not be taller than the taskbar
when it is on the top or bottom of the screen, nor wider than the taskbar when it is on the
left or right, making their overall size both limited and unpredictable. As such, a toolbar
presents only slightly more opportunity than a system tray icon to present always-visible
information, and is primarily useful for the function it serves in CALO Express: as an means
of input rather than output.

Floating windows, or palettes, are simply normal windows with the special property of
remaining on top of all other windows even when they are not in focus. They can be of
any arbitrary size and shape, and are thus much better suited to displaying information, but

A Windows system tray icon

A Windows toolbar

CALO Stardust �

their lack of integration with the Windows interface
means they tend to occlude other windows and must
frequently be moved out of the way to see what is
below them.

Monolithic windows are the typical approach
of desktop applications designed for focused use
for a particular purpose. When the window is in
the foreground, possibly even maximized to fill
the screen, all information inside it is constantly
visible regardless of its importance. When another
window is focused, it may cover the original
window and render its contents invisible to the
user, but this seldom matters because the user is
not interacting with the hidden application. Such
windows can also present multiple problems in
terms of information overload and difficulty of
finding relevant information. The existing CALO
interface, IRIS, employs a monolithic window of this
sort that contains within it all the applications and
information of which CALO is or can ever be aware.
Since Stardust is not intended to be used primarily in
this manner, and the AI is aware of information not
contained in any particular window, a monolithic
window is clearly inappropriate, a view supported by
both previous research and consensus at SRI.

Sidebars have many of the advantages of floating
or monolithic windows, in that their size is less constrained than a toolbar or system tray
icon’s, but they enjoy an integration with the existing interface of the Windows operating
system that normal windows lack. In particular, maximizing windows when a sidebar
is open will cause them to stop short of the sidebar, thereby ensuring automatically that
windows do not overlap or occlude the sidebar. The sidebar takes up an entire edge of the
screen from corner to corner, but the length of its other dimension is entirely unconstrained
and can range freely from a tiny sliver to a behemoth of a window spanning half the screen.
The user is capable of manually resizing the sidebar to fit his or her preference. Therefore,
we agreed upon a docked sidebar as the best solution for Stardust’s interface, so long as we
provide a way for users to flexibly adjust its size to meet their need for available screen real
estate. As for the location of the sidebar, the right side seemed optimal as it does not cover
or displace applications and icons that are on the left side of the desktop on Windows, nor
does it interfere with the Windows taskbar (itself a sidebar) which is usually placed on the
bottom or top edge.

In order to keep the sidebar as narrow as possible, and to preserve the distinction between
always-visible and on-demand information, the only information presented in the sidebar

The monolithic IRIS window

A palette window

CALO Stardust �

is that which users need to orient themselves within
their work. This allows users to focus on the task at
hand rather than forcing them to turn their attention
to the task of managing other tasks. Our background
research, contextual inquiries, and concept validation
all indicated to us that the most valuable information
for this is that which allows users to understand what
their situation is at the present moment and perhaps
slightly into the future; high level planning and task
organization activities are seldom carried out in
the middle of working on something, but are rather
integrated into the down time between tasks [V.1.a,
V.1.b, V.2.b Fig 19]. In order to get more information
or details from the sidebar, users can double-click
the panes in the side bar to open up stand-alone
windows such as task viewer, calendar, and pack
window. The sidebar’s purpose is to contain
information users need at all times, and given the
limited space, it does not contain everything users
can do with each pane. The additional information
is accessible upon request. For example, to perform
advanced filtering and organization of tasks, users
must open the task viewer. This concept was later
positively confirmed by users in paper prototype
think-alouds [V.3.a Fig 31].

Multiple collapsible panes
From our contextual inquiry and concept validation,
we gathered insights about which information users
would need to see at all times [A 1.b, 2.b]. Some
persistent information sources were applications
such as the user’s calendars and email clients, while
others were scattered bits of information, things
they might jot down on a piece of paper. Users also
wanted access to their current list of tasks, and to be
notified of important events. We needed to gather
all the requisite information and functionality onto
the sidebar while presenting it to users in a useful
and accessible form. Thus, we decided to frame the
observed clusters of information as separate panes in
the sidebar. These panes visually divide concepts in
the sidebar, while allowing them to be synchronized
behind the scenes. Thus, we apply a visual hierarchy
to Stardust while simultaneously providing users with
increased flexibility in layout of their sidebar. The CALO Stardust sidebar

CALO Stardust �

When it comes to customizing layouts, Stardust
provides users with a fair amount of flexibility to
use most of the space on the sidebar to display
the panes that they find most useful. Aside from
the ability to resize panes by dragging the dividers
between them, users can easily collapse or expand
most panes in the sidebar. This flexible interface
allows users to customize the information that they
need to have available on their sidebar; a contextual
inquiry documented this user need [V.1.b]. For
example, we observed that some people need to see
their schedule at all times while others only needed
their calendar when planning an event. By allowing
collapse and expand, we can ensure that our limited
sidebar space is tailored to suit the information that
is most salient to any given user. The collapse/
expand metaphor extends not only to the panes in the
sidebar but also to subpanes in the task pane; making
subpanes collapsible allows users to view more of the
information they need to see in their open panes. The
only panes that are not collapsible in the sidebar are
the notification center and access to applications icon
well. These must necessarily always exist on screen:
the notification center serves as a hub of summary
information that users need to be aware of as well
as critical reminders, and the icon well serves as a
home base to allow users a well-defined way to access
CALO components. As such, we disallow resizing
these two panes; after all, flexibility is only useful to
users if it does not overwhelm the sidebar’s ability to
show them what they need right now.

Icons and labels
As described above, users of a sidebar have obvious
benefits for a system like CALO Stardust; however,
this interface choice necessarily limits our available
horizontal space, restricting our ability to use textual labels. Though it does help to label
some obscure icons, labeling everything in the interface would result in unacceptable
clutter on a sidebar. As such, Stardust uses icons whenever possible to compactly represent
concepts on the sidebar. Some of these icons are novel (e.g., the “put on hold” icon)
and were initially confusing to users during think-alouds [V.3.b Fig 33]. To address this
problem, we have iteratively refined our iconography, and further, we have included tool tip
descriptions to help users figure out what an unfamiliar icon might do. Tool tips are included
in almost every element of the CALO Stardust sidebar to describe various icons, give further
instruction about actions, and present more detailed information for various controls and

Opened schedule pane and
collapsed task and CALO
suggestions panes

CALO Stardust 10

components. They provide on-demand textual
information while not taking up valuable space
on the sidebar. We also used tool tips to overcome
the problem of the limited horizontal space of
the sidebar, which causes lengthy text to become
truncated depending on the bar’s user-defined width.
The tool tips turned out to be extremely useful to
users during the implementation think-alouds [V.3.b].
Since the concept of CALO is novel and there are
components that are not completely intuitive, many
users used the tool tips for quick help. Thus, having a
descriptive explanation was crucial.

Mini-bar
We observed during contextual inquiries that many
executives only used one monitor, in constrast to
their assistants’ mulitple large monitor screens
[V.1.b]. In addition, during our concept validation
session, users expressed the importance of screen
real estate and reservations about giving up a large
chunk of their screen for a persistent application
such as Stardust [V.2.b Fig 22]. Users expressed that
they would be much more enthusiastic about the
idea of a sidebar if it could be hidden or minimized.
However, simply minimizing the sidebar to a taskbar
button or system tray icon prevents the system
from displaying multiple notifications (e.g., urgent
notifications and important emails) and reduces
users’ access to content in the other panes such as
tasks and schedule. This led us to design a collapsible
version of the sidebar called the Stardust mini-bar
that takes up minimal space while still giving users
quick access to necessary information.

The mini-bar is the slimmed down, minimized
version of the CALO Stardust sidebar with icons
representing the task pane, the schedule pane, and
CALO suggestions pane. The notification center
is shown in an iconic form, and the icons in the
application pane are arranged in a single column.
The notification center is not reduced to a single
icon, unlike other panes, because the notification
center presents frequently updated information the
system thinks the users need to be aware of; requiring
a click or other user action to see this information

A tool tip appears upon hover

CALO Stardust 11

is not sensible. Similarly, we decided to leave the
buttons for applications and CALO components
available since the mini-bar’s layout left plenty of
vertical space for them, and it did not make much
sense to create a shortcut for shortcuts.

Users can change from sidebar to a mini-bar with
one click using a button at the very top of the
sidebar. Clicking on one of the icons in the mini-bar
will display the pane represented by that icon next
to the sidebar, on top of all other windows. Only
one pane can be visible at a time, and clicking on
the button again collapses the pane. The mini-bar
presents a fundamentally different interface paradigm
from the full sidebar, since what would otherwise
be always-visible information is changed to be on-
demand instead. This reduces the usefulness of the
CALO suggestions and schedule panes especially,
since both of these are designed to be opportunistic:
users see something of interest on the pane, and only
then make the decision to interact with it. However
to compensate for this problem in the CALO
suggestions pane, the icon for that pane will light up
whenever there is an available CALO action. Since
our users consider the ability to minimize or collapse
the sidebar to be vitally important, the mini-bar
presents a reasonable compromise.

Training
CALO’s performance increases dramatically when
it receives effective training. Our concept validation,
however, revealed that users wish to spend as
little effort as possible on training as it tends to
disrupt their work flow, consume time, and bring
frustrations. This is one of the major problems with
the existing system; training is slow, is presented
with language users are not familiar with, and the
progress of the training cannot be easily visualized
or retrieved. Our concept validation further solidified
the fact that users wanted the system to implicitly
learn as much as possible, thus reducing the amount
of explicit training users need to give [V.2.b Fig
26]. Explicit training tends to involve some kind
of rules-based instruction, which most users felt
to be intimidating and difficult to articulate. Thus,

Switching from the CALO Stardust
sidebar to mini-bar

"

CALO Stardust 12

we opted for training by correction as our default
model—to make training implicit by allowing the
system to adapt and learn from users’ actions rather
than making users tell the system how to behave.
For instance, we incorporated the use of icons to
encourage more training from the users. When users
click the trash can icon to delete a task, it teaches the
AI that the task does not have to be done anymore.
The problem with the implicit training is that it is
comparatively slow, and it would take a while for
the system to perform in a manner that makes the
system’s benefits apparent to users. With this in
mind, we sought ways to incorporate some explicit
training without breaking users’ work flow.

Our solution is to ubiquitously include explicit
training as a part of right-click contextual menus
throughout the interface. Through the use of
right click menus, teaching the system is simple,
ubiquitous and consistent throughout the entire
application. If users want to train the system, there
are two main options in the right-click menu to
guide the AI to the correct behavior. The first is to
select “this is incorrect,” which tells the system that
the item does not belong. For instance, if CALO
added an irrelevant file as a resource associated to
a particular task, this action would delete the file
and teach the system that it should not have been
there. The second option is to select “this is almost
correct,” which tells the system that it is partially
wrong without the user having to define a rule for
the system to adhere to. The right-click menu can
have more options depending on what object users
are pointing at; for instance, right-clicking on a file
will include the option “find similar files” in order
to add a document that the AI did not include.
Additional training can be reached when users open
the the system’s learning log. It lists any learning
undertaken by the AI along with the sources of
information it used to build its inferences. Users can
choose to spend extra time training the system when
they want by going to the learning log and correcting
any incorrect associations the AI has made.

Training CALO in
the contextual menu

CALO Stardust 13

Animations
Stardust makes extensive use of animations in its user interface. While at first glance
this may seem like a profligate use of superfluous visual effects, animations actually
serve an important purpose. In an AI-backed application such as Stardust, the system
can conceivably make changes to the user interface that are not in response to some user
action. Therefore, it is imperative that users be kept aware of such changes to the maximum
possible degree. This is not always possible if, for example, users are not at their computers
at the time the interface changes. The AI takes care only to initiate changes to the interface
soon after user interaction partly to minimize this problem. This still leaves, however, the
possibility that users’ attention will be elsewhere when the change occurs in the sidebar.

While human perception is such that one will usually attend to a sudden change in one’s
peripheral vision, the change must be perceived in order for attention to be directed there.
The eye is constantly moving from place to place in small, unconscious movements called
saccades, which take between 20 and 200 milliseconds [46]. During that time, the visual
cortex stops processing incoming visual information, so if a change to the sidebar occurs
during a saccade, it will not be perceived by users regardless of its magnitude. This assumes,
however, that the screen update takes less than 200 milliseconds to occur. This is why
Stardust employs animations.

While some animations in Stardust do occur in direct response to user actions—collapsing
or expanding subpanes in the task pane, for instance—most are initiated when the system
makes a change without users’ direct interaction. When the AI reorders tasks, the tasks
animate to their new locations over the course of at least 750 milliseconds to ensure that
users will have an opportunity to perceive the movement. When the AI adds a new task,
the task fades in and the other tasks slide out of the way to make room for it, again over 750
milliseconds. The block view in the schedule pane (further details in the “Schedule pane”
section) displays users’ meetings for the day as “blocks” of time and animates the motion of
these blocks over the course of the day (although it is rare for a meeting to move more than
one pixel in a single update).

The notification center especially makes frequent use of animations. This is not surprising
considering that a major role of the notification center is to capture users’ attention when
important aspects of the system state change. In particular, when the sidebar is in “mini-
bar” mode such that labels for notifications are not visible, high-priority notifications
animate out of the sidebar, hovering over the desktop for a few seconds before fluidly
disappearing again. New notifications also smoothly animate in, and high-priority
notifications exhibit a pulsing effect for the first few seconds to further ensure that the user’s
attention is drawn, if only briefly, to the text of the notification.

Our team has considered but did not have the time to explore the ways in which users
can undo their actions. Stardust does not have menus, therefore there is no easy way of
showing affordance of the undo function, even with the common keyboard shortcut (crtl-
z) employed. Perhaps the function can be incorporated into the contextual menu, an
unconventional but possible location for it to be seen and used universally.

CALO Stardust 14

b. Task pane

The task pane is one view of Stardust’s to-do manager.
It contains three subpanes that hold active tasks,
tasks that are “on hold” (a concept described below),
and complete tasks, respectively from top to bottom.
The tasks themselves are ordered by a priority that
is determined automatically by CALO’s AI. The
subpanes can be collapsed to show only the title bar,
normalized to show several tasks, or expanded to
show all tasks in the subpane. When the length of
visible tasks becomes longer than the height of the
task pane, a scrollbar appears. Users can manually
enter tasks through a text field above the list of tasks,
or the AI may add tasks automatically, such as after
parsing the content of emails. When the AI adds tasks
automatically, it takes care to wait until the causal
relationship between the source of the task and the
task itself is clear: for example, if CALO parses an
incoming email and determines that it contains a
task, it would not immediately add the task. Instead,
it would increase the priority of the “new email”
notification for that email in the notification center to
encourage users to read it, and only then add the task
so that the system’s reasoning is apparent to the user.
Nonetheless, whenever new tasks are added by the
AI, users receive a separate notification of this in the
notification center so that they can easily keep track
of system actions. When a task is collapsed (its default
state), it uses two lines to show the name of the task,
its due date, a star field, a completion checkbox to
move the task to the Complete subpane, a trash can to
delete the task without marking it as complete, and a
“put on hold” icon to move the task to the On Hold
subpane. Tasks can be expanded to show more details,
tags and associated resources. The order of the tasks can be moved manually by dragging
and dropping tasks around in the pane. Users can text-search through the tasks using the
search field below the added task text field. Users can search through title, due dates, tags
and files to find the exact task they are looking for. The design decisions made regarding the
task pane are described in more detail below.

Ordered by priority
One of the major decisions made at the early stage of ideation phase was that tasks should
be prioritized by the system to take away users’ cognitive load of figuring out what needs to
be done and can be done in some set amount of time. We wanted to avoid simply replicating

The task pane

CALO Stardust 15

many other task managers that already existed. Since our target users deal with a large number
of tasks, a simple list of tasks would only marginally help them in prioritization. Ample
evidence for this exists in the fact that our contextual inquiries and concept validation showed
that although many of our target users had tried electronic to-do lists in the past, they had
usually abandoned them and reverted to more flexible paper-based solutions, such as attaching
post-it notes to documents (associating resources), creating different to-do lists for different
areas of responsibility (tagging), and so on [V.1.b, V.2.b Fig 29].

Stardust’s conceptualization of priority actually corresponds to two separate concepts as
perceived by users: urgency and importance. Urgency depends upon the amount of time
left before a task must be completed, and thus changes over time, whereas importance
remains fixed for the duration of the task (excepting outside influences). As we have seen
in our background research, and especially in work conducted by the RADAR team on task
management, these factors are combined implicitly by users when assessing priority: a task
that is unimportant may initially be prioritized below a more important but less urgent task,
but becomes more highly prioritized as it becomes more urgent as its due date approaches
[V.1.a]. The AI therefore estimates both importance and urgency and generates a priority
score based on these estimates.

The idea of automatic prioritization was tested extensively at different user study stages,
from concept validation to think-alouds [V.2.b, V.3.b]. Some users expressed reservations
about using such a feature, stating that they did not want their computers to “tell them what
to do.” To enhance users’ perception of being in control of the system, therefore, Stardust
allows users to modify the order of tasks manually.

Grouping
During our contextual inquiries, we observed that
users sometimes have groups of tasks that need
to be dealt with sequentially [A 1.b]. These tasks
may form the steps of a formal process, like steps
in recipe, or each task may simply require that the
task before it be complete before it can be started. In
the context of the AI system, such groups serve to
ensure that the AI does not reprioritize the tasks into
an incorrect order or separate them from each other.
To support this, Stardust allows users to group tasks
and create task groups in the task pane by dragging
individual tasks on top of each other.

Task groups act somewhat like individual tasks,
with some key differences. Although the AI may
reprioritize the group as a whole, it will never
change the order of tasks within the group (although
users can reorder tasks within a group via drag and drop), nor will it split up the group by
reordering an outside task into the middle of it. Individual tasks in a task group cannot be

(Wireframe) Grouping tasks in the
task pane

CALO Stardust 16

marked as on hold; the entire group’s status changes as a single unit. Likewise, although
each individual task can be marked as complete independently, the task group will not
move to the complete subpane until every task within it has been completed. The due date
of a task group is the earliest due date of any task contained within it. Each individual
task retains its own independent list of associated resources. Task groups can be given an
optional title to more explicitly identify any process represented by the group.

The complexity of representing and altering task groups prevented us from implementing
them in our current prototype, and attempts to test the interaction using paper prototypes
was hampered by the lack of drag-and-drop affordance of the paper representation of the
tasks [V.3.a Fig. 31]. Users frequently could not determine how to group tasks together
[V.3.a]. While improved affordances in later prototypes largely resolved these issues, testing
the changes required the use of working on-screen prototypes in which grouping was not
implemented, and thus grouping could not be further tested. Additionally, some details of
the interaction remain to be addressed (for example, when a task is dragged onto another
task, which task should be first in the group?).

Drag and drop reordering
Though one of the strengths of Stardust is the
AI’s ability to figure out priorities of tasks for the
users and automatically move them between to-do,
pending, and complete, we still needed to keep the
ability for users to manually control these aspects
to avoid some of the pitfalls of highly autonomous
agents we encountered in our background research
[V.1.a]. In our design, in addition to dragging tasks
into groups, users are able to drag a task and move
it to change its relative positioning inside a subpane,
and thus change its relative priority. Although not
implemented, the user will also be able to drag tasks
from one subpane to another. Drag-and-drop allows
direct manipulation of tasks, which is far more
intuitive than manipulating the numerical ordering
of each task. Another benefit is that it is non-modal,
avoiding interrupting users with unnecessary dialogue
boxes. In addition, drag-and-drop control doesn’t use
additional space, which is a substantial benefit for
a sidebar whose space is inevitably limited. Lastly,
drag-and-drop also provides a good opportunity for
users to implicitly communicate their intentions to the
AI by reordering tasks. The system is even capable
of delivering immediate feedback when users drag a
task into a new position by, for example, reprioritizing
other related tasks as well. Animating a drag and drop

CALO Stardust 17

In our initial think-aloud user tests, we consistently found that the tasks did not afford
dragging to the degree necessary for users to discover the feature [V.3.a]. Due to the
importance of allowing user reprioritization and the difficulty of providing a different,
secondary interaction to accomplish the same goal, we took great care to modify later
prototypes to make the interaction more apparent. Knurling was added to the bottom
edge of each task, and when the mouse is moved over the draggable area of a task (that is,
anywhere not otherwise occupied by a control) the cursor changes to indicate that the task
can be moved. Later user tests indicated that the discoverability of this interaction was
greatly improved by these changes [V.3.b].

Once users initiate a drag movement, it is important that they know in advance what will
happen when they drop the task. This is accomplished by means of a feedforward effect:
as users are dragging, if the task is positioned such that it would drop onto another task
were the mouse button released at that moment, the task onto which it would be dropped
is outlined in a constrasting color different from all the other tasks in the view. If, on the
other hand, the task is positioned such that it would be reordered between two tasks, a thick
line is drawn in the same contrasting color between the two tasks the dragged task would be
dropped between. If the task would be ordered at the very top or very bottom of the list, the
line is drawn at the top or bottom respectively. Once the task is dropped between two tasks,
it animates into its new position between those tasks.

The “CALO added a task” icon
Another way to mitigate the effect of high system
autonomy is to inform users which tasks are being
added by the system. Though the notification center
informs users of these system actions, checking the
validity of each task from the notification center can
be tedious. We decided there should be a way for
users to quickly glance through tasks to make sure
the accuracy of system’s actions. Stardust does this
by marking the system-added tasks with a CALO
icon. Users can look over the task pane whenever it
is convenient, verify that CALO has added the tasks
appropriately, and click each icon to indicate that the
task is correct. If it was not correct, users can also
right-click on the task and select an option under
“Training CALO” to tell CALO that the task was
added incorrectly. This provides highly beneficial
feedback to CALO’s AI, as well as allowing users
to keep track of which tasks they added manually
(tasks which are, at least in theory, guaranteed to be correct and appropriate), tasks which
CALO added but which have been subsequently verified (which can also be assumed to
be correct and appropriate), and tasks which CALO has added and which have not yet
been verified (which may have been added in error). The benefit of distinguishing between
the first and second of these states is twofold: first, removing the icon completely would

CALO added a task

CALO Stardust 18

inhibit user freedom since it would be impossible
to “un-click” the icon if it were clicked in error.
Second, it increases the visibility of the system
state, removing from users the cognitive load of
remembering the circumstances in which the task
was added. Additionally, since our contextual
inquiry observations indicate that many users put
only enough information into a to-do list item to
effectively cue them to recall all the information they
need to complete the task, distinguishing between
user-added and CALO-added tasks at all times allows
users to incorporate this information into their cue
[V.1.b].

Due dates
We found out during our think-alouds that many
users associate priority with due dates [V.3.a,
V.3.b]. Since the due date of a task only indicates
its urgency, however, and not its importance, simply
sorting the task pane by due date provides at best an
incomplete model of task priority. Even if all tasks
were equally important, simply ordering by due date
would result in a random ordering for any tasks
that were assigned the same due date or no specific
due date at all, and from previous research and our
contextual inquiry observations, both situations
appear to be a very common situation [V.1.a, V.1.b].
The concept of priority used by Stardust goes beyond
due dates in that it incorporates other factors such as
the project the task belongs to, whether the task is on
hold, etc. This is essential for our target users who
often have multiple tasks due on the same day.

Our initial interface only listed the names of the
tasks when the tasks were collapsed. Because users
take due date into account in prioritizing tasks,
however, we determined that displaying the due
date of tasks in the task pane would provide an
opportunity for users to quickly verify that the AI’s
task ordering is sensible and provides a greater sense
of control. From a design critique, it was suggested that simple task ordering might not be
enough information for users to completely verify that CALO’s prioritization is correct.
Since the internal representation of priority, a floating-point number, has no intrinsic
meaning in users’ conceptual model, we felt it was important to avoid directly exposing this
number to users in order to “speak the user’s language,” so we instead chose to list due dates

Setting a due date

Users can click on the “C” to
tell CALO that it has added a
task correctly

CALO Stardust 19

along with task names to help users discern the urgency of each task. Coupled with the
user’s assumed understanding of the importance of each task, this allows the user to quickly
make judgments about the relative priorities of items in the task pane, and to correct them if
CALO’s AI’s judgment differs from that of users.

Multiple groups
During our CIs, our team observed that many users kept stacks of papers on their desks to
organize their tasks [V.1.b]. Usually, users keep at least two major piles—a pile for things
to get to right now and a pile for things they can’t work on immediately because they are
waiting for others to provide additional information or actions (a state we refer to as “on
hold”) [V.1.b Fig. 3]. The completed task pile is kept separately, often away from their desks.
The use of physical piles makes the distinctions between and number of tasks in each group
intuitive. Users immediately know how much work is to be done that day, and how much
work is waiting for others’ responses before they can get to them. The problem with the use
of stacks is that the only tasks visible are the ones on the top of the stacks. Though users
usually have some idea of where the task might be in the stacks, a computer is obviously
better suited to finding information quickly in vast amounts of data. Thus, in our design, we
aimed to keep the mental model of stacks while enhancing the search and retrieve actions.
The physical stacks of papers were translated to subpanes in the task pane, with each
subpane serving as a repository for active, on-hold, or complete tasks. The concept of having
a repository for pending tasks was especially well-received by assistants who deal mostly
with short sequences of actions that frequently involve waiting for responses from other
people [V.2.b Fig. 25]. The Complete subpane would store all the tasks that users or CALO
has marked “complete,” and the subpane would empty
its repository after a certain amount of time specified
by users (one day, three days, one week, etc.).

Filtering of tasks
Even though the sidebar space is limited, we decided
to provide a text-search capability for tasks to help
target users better manage their tasks. As mentioned
above, one of the major advantages of having a digital
to-do list is its ability to find the exact task users are
looking for in a matter of seconds. Previous research
conducted by SRI indicates that overburdened
knowledge workers typically manage a large number
of tasks (at least sixty), and being able to search and
filter through them to work on a particular one is quite
important. Furthermore, since tasks tend to shift
around as their priorities change in CALO Stardust,
having a filter to easily search for a task is essential
to avoid considerable user frustration. To make the
process of searching as effortless as possible, typing
characters into the search field immediately filters
the task pane to show only those tasks matching the Filtering tasks

CALO Stardust 20

search criterion. This allows users to obtain preliminary search results as they type, which
human-computer interaction research (notably that of Ben Schneiderman) has shown to
increase the effectiveness of search terms and user satisfaction with the results.

Rather than only allowing tasks to be filtered by title, the search field looks at all textual
information associated with the task, including its due date, tags, and associated resources.
This allows users to show only tasks due today (by typing “today” into the search field),
only tasks due at a certain time, only tasks with a certain tag, or only tasks with which a
particular file or email is associated. The search also includes users’ description of the
reason tasks are on hold, and the names of people on whom they are waiting, so users
can see all tasks waiting on a particular individual by typing their name. In lieu of a more
complex query-based search syntax, we feel this provides the greatest flexibility while still
remaining accessible and discoverable to novice users.

Our think-aloud user tests showed that the immediate filtering strategy employed by the
task pane had one substantial drawback: users tended to become confused when tasks
seemed to disappear while using the filter field [V.3.b]. This may be partly due to the fact
that the field is labeled “search,” which is ambiguous as to whether it implies a direct filter
as seen in applications like iTunes, Windows Vista’s Explorer, and the Mac OS X Finder,
or a traditional type-and-hit-enter search as seen in applications like Mozilla Firefox and
Microsoft Word. In an attempt to provide better feedback for users initiating searches, a
placard appears at the top of the task pane when a search filter is active stating that the view
is showing only matching tasks and indicating how many matching and total tasks exist.

Maximize, normalize, and minimize
The CALO Stardust sidebar includes several panes, all stacked vertically, so the task pane
can only occupy a part of the vertical space on users’ monitors. This means that while
vertical space is much less at a premium than horizontal space, it is highly unlikely that users
with a typical number of tasks will be able to see all their active, on-hold, and completed
tasks at once. In particular, simply providing a scrollbar to allow users to scan down the list
would severely reduce the visibility of the “On Hold” subpane. Since contextual inquiry
has shown that having on-hold tasks in a separate stack is useful primarily because one’s
attention is periodically drawn to them (and thus one is reminded that the tasks are still
incomplete), forcing the On Hold subpane out of view largely defeats the purpose of its
existence [V.2.b Fig 3].

To avoid this, we provide three states of visibility for subpanes: maximized, normalized
and minimized. When a subpane is maximized, all the tasks in that subpane appear in
order as one might expect. When minimized, a subpane only shows its title (e.g., “To
Do”) labeled with the total number of tasks in the subpane. This allows users to collapse
irrelevant subpanes when they only want to see tasks in other subpanes. When a subpane is
normalized, users see only the topmost few tasks; since the subpanes are sorted by priority,
the visible tasks are the ones that have been prioritized highest by the AI. The number
of tasks that are visible in a normalized subpane depends on which subpane it is (more
tasks are visible in the To-Do subpane than the Complete subpane, for example) and, in

CALO Stardust 21

a complete implementation, would also depend on
how much space is allocated to the task pane in the
sidebar such that all three subpanes together would
fit precisely in the available space without a scrollbar.
In the normalized state, the title bar indicates both
the number of visible tasks and the total number of
tasks in the subpane to clearly distinguish between a
normalized subpane that is only showing four tasks
and a maximized subpane that only contains four
tasks.

Our initial prototypes featured two buttons at the top
of every subpane [V.3.a Fig 31]. The buttons differed
in function depending on the current state of that
subpane: a normalized subpane would have minimize
and maximize buttons, a maximized subpane would
have minimize and normalize subpanes, and so on.
In order to make apparent the difference between a
maximized subpane with four tasks and a normalized
subpane only showing four tasks, we added a link-like
button at the bottom of each normalized pane for
which there are additional unseen tasks “below the
fold.” The button performs a maximize operation,
and its label indicates the number of tasks that would
be made visible by clicking it. When the pane is
maximized, the link’s function changes to a normalize
operation, and the label tells the user how many
items will be visible when the pane is normalized.
Users found the buttons at the top of the subpane
to be confusing in our think-alouds, in part because
the functions of the button at any given position
would change once one had been clicked [V.3.a].
They had no trouble, however, with the link, and used it almost exclusively in lieu of the
more daunting buttons to maximize and normalize the subpane, only using the button for
minimization [V.3.b]. Based on these results, we simplified the interaction model from a
three-state toggle (minimized, normalized, maximized) to two two-state toggles (collapsed
or not collapsed, and maximized or not maximized). A subpane that is neither collapsed
nor maximized is considered to be normalized. A single button at the top of the subpane
controls whether the subpane is collapsed, and the link at the bottom controls whether it is
expanded. As we later discovered, this matches the interaction of other successful interfaces
of this sort, most notably Apple’s Spotlight.

Although subsequent user tests showed the new model to be significantly easier to use, one
drawback of the model presented itself: in a maximized subpane containing many tasks,
users must scroll past all the tasks in the subpane to reach the link by which the subpane can
be normalized.

The subpanes minimized,
normalized, and maximized,
highlighting the button on the
top to collapse, and the links on
the bottom of each subpane to
normalize or maximize

Minimized

Normalized

Maximized

CALO Stardust 22

Scrollbars
A scrollbar appears in the task pane when the height of the visible tasks becomes larger
than the space allocated to the task pane on the sidebar. This is necessary in order to view
everything within a limited amount of pane space. The decision was made to have only
one scrollbar for the task pane, rather than one for each subpane, so that users would not
be obliged to collapse every subpane other than the one they were interested in whenever
they wanted to make efficient use of vertical space: if each subpane had its own scrollbar,
the already limited space of the task pane would be even further restricted by the height of
the subpane that was to be scrolled through, making it difficult for users to visually compare
multiple tasks, to say nothing of drag-and-drop. For example, if users wanted to view and
interact with only their To Do tasks at the moment, they can simply expand the To Do
subpane to let it take up the visual space of the task pane. If they later on wished to view
the On Hold and Complete subpanes, they can simply scroll down the entire task pane to
see them. This single-scrollbar strategy also eschews the visual clutter of a pane with three
scroll bars one on top of the other, and resolves the ambiguity of how large each subpane
should be within the task pane. (Should they take up equal space? Should they be sized
proportionally to the number of tasks contained within them? Should the To Do subpane
always be larger than the Complete subpane? And so on.)

Expandable tasks
Users can single-click on each task to expand it to view
more details such as the associated resources and tags.
Since tasks are collapsed by default, this saves some
space in the side bar, so users can see more tasks in
the limited space. We found that this model is easy to
comprehend for virtually all users during think-alouds
[V.3.a, V.3.b]. The addition of a disclosure triangle to
afford the expansion behavior made the feature easily
discoverable by users as well. The decision was made
not to limit the number of expanded tasks at any given
time, both for consistency with the subpane states and
to allow the user to visually compare one expanded
task to another. This decision does place the onus on
the user to collapse tasks when they no longer need to
be expanded, however, or to accept a less efficient use
of space.

Ways of adding a task (text or dragging)
We borrowed the way users add a task manually from
the existing CALO to-do manager, Towel. We support
two ways of adding tasks. The first way is by typing a
task name into a text field and either clicking an “add”
button or hitting the enter key on the keyboard. The
second way is by dragging a resource (a file, email,
URL, etc.) into the task pane. This will automatically

An expanded task

Adding a task

CALO Stardust 23

make a task that users can edit later to add more information if they wish. The second
option also automatically associates the given resource with the new task, and is especially
useful when users want to capture loose items quickly without spending time typing tasks in.

Mark as complete and “delete”
In a typical task manager, the distinction of tasks
being completed and tasks that need to be removed
from the to-do list for whatever reason (simple
cancellation, etc.) is not important. For CALO
Stardust, there are important differences between
these two actions in terms of what and how the AI
learns from each. When users mark a task as complete, the AI observes the circumstances
in which the task was finished and uses this information to automate task completion for
future tasks. When users delete a task, however, the AI must consider the possibility that
the task was added by the system in error, or that the need to complete the task has gone
away for some external reason (e.g., someone else did it). Having one action that represents
both would confuse the system and delay its learning. Therefore, we needed to supply
two different actions that represent completion and deletion without either cluttering the
interface too much or confusing the users. We used a check box on the left side of each task
for users to mark it as complete, and a trash can icon on the right side to delete it.

During think-alouds, we found that many users interpreted the check box as a mechanism
for selecting a task, as seen in Web-based interfaces like Yahoo! Mail and Google Docs
and Spreadsheets [V.3.a, V.3.b]. Although we initially believed, based partly on the
design of CALO’s Towel to-do manager, that users would distinguish between Web-based
applications such as these and desktop applications like Towel and Stardust where selection
is usually indicated by clicking directly on the item which highlights it in a different color,
this assumption was not validated by the user tests. We therefore modified the “mark as
complete” box to use a stylized check mark rather than a native Windows checkbox control,
to more clearly indicate the function of the interactor.

Tags and stars
Tags and stars provide additional ways for users
to differentiate tasks from each other. They are
semantically decoupled, meaning users can use them
in any way they want without any strict constraints
from the interface. They are also convenient when
users want to search or filter their tasks. This
convention is also seen in Google applications that a
lot of users are familiar with. Users would type in a
tag to filter for tasks associated with that tag, and they
can also type in “*” to search for starred tasks. In
our think-alouds, several users interpreted the star as
imparting additional priority to a task [V.3.a, V.3.b].
However, others seemed to approach it as a way to

Buttons for marking a task as
complete and deleting a task

Tags and star on a task

CALO Stardust 24

mark a task as needing attention for later. The various interpretations of the star during the
think-aloud suggest that it is serving its intended purpose.

Associated resources
The idea of being able to associate resources with tasks was adapted from the existing
CALO. By “resources,” we mean any object that can be represented in the file system. This
obviously implies files, but files can be and are used in Windows to represent other forms of
data such as Web site URLs and email addresses (.url files) as well as contacts (vCard files),
scheduled events (.cal or .ical files), etc. The existing CALO system has a component called
“PrepPAK” where users can get associated resources for meetings. Our team expanded
on the idea and made the feature available for tasks as well as meetings. The associated
resources can be seen when users expand the tasks. The idea was strongly resonated by our
target users during the concept validation interviews [V.2.b Fig 20]. It reduces the time for
them to search for the file they need to work on and any versions of files they have saved
along the way.

While the original PrepPAK idea was preserved in our pack view, described elsewhere in
this document, the concept of resource association was modified considerably when it was
integrated into the task pane. Unlike a pack, which is generated on-demand and opens in
a separate window, the resources associated with a file are always available for immediate
view and can be accessed from the sidebar within the task itself. In this, our system more
closely resembles the static file associations of the Towel to-do manager, with the notable
difference that task pane resources are dynamic and managed by the AI, which can add
and remove resources from tasks automatically. This might happen if, for instance, CALO
parses an incoming email with an attachment, adds a task for that email, and associates the
email, its sender, and the attachment with the task.

Users can also associate resources with tasks manually. There are three ways of
accomplishing this from within the task pane interface: first, if users drag one or more
resources into the task pane directly, a new task will be created for those resources and they
will be associated with it. In the current prototype, the task is given the same name as one
of the resources, but one can easily imagine CALO inspecting the resources to determine
what the task might be in the same way it can identify tasks within incoming emails.
Second, users can drag resources onto an existing task, which will associate the resources
with that task. Lastly, because the tasks and task pane do not obviously afford dragging, an
“Add resource” button is also provided on each task to allow users to add resources using a
standard file chooser dialog.

c. Notification center

The Stardust sidebar is designed first and foremost to provide users with information that
is needed at a glance. However, with limited available space, even persistent sections such
as the task pane cannot always display all of their information on screen at once. This is
the motivation for the CALO Stardust notification center. The notification center serves as

CALO Stardust 25

a persistent space from which CALO can place information on the screen in a way that
is always visible. The center serves three distinct purposes. First, it is a dedicated space
for reminders to alert users of upcoming scheduled events or urgent tasks. Second, the
notification center communicates to users about important recent emails, so as to encourage
them to check their inbox at the next convenient moment and allow CALO to take action
regarding any meetings, tasks, or other information the AI gleaned from reading the emails
as they arrived. Finally, it provides a way for the CALO AI to notify users that it has
performed an action (for example, added a task, or changed the priority of a task) that they
may not have noticed. This ensures that users remain well-informed, even when items
change without their direct manipulation.

Three types of notifications
The notification center displays three different types
of notifications: timed reminders, important emails,
and CALO actions. Each serves a distinct purpose,
and is visually separated from the other types using
badged icons. The first notification type is timed
reminders—these are notifications of time sensitive
items which the CALO AI determines would be
detrimental should users miss the deadline. Imagine
items such as upcoming meetings, teleconferences, or
tasks with approaching deadlines; each is “mission
critical” for busy executives, and Stardust now has the ability to keep these items in users’
visual field where they cannot be forgotten. Further, reminder notifications flash briefly as
they appear in the notification center to add a final visual impetus to their appearance. We
feel that such reminders are not too intrusive; in our contextual inquiries, we saw several
target users already had a notification system of this sort in place, usually one that came
with the calendar application they were currently using (such as Microsoft Outlook or
Oracle Calendar) [V.1.b Fig 6]. Our think-alouds strengthened this point; without extra
visual cues, subjects were apt to ignore reminders while engaged in a task on other parts of
the screen [V.3.b].

So far the notification center is very similar to systems in place for many of our target
users; however, our team recognized that there are other types of notifications that would
prove valuable to users other than simple reminders for scheduled events in their calendars.
Therefore, we intend the notification center to be the place for all notifications, whether
they are coming from users’ calendars, or their task managers, or from CALO itself. A
body of HCI literature indicates that emails tend to be the hub of information in the
workplace because it is one of the major communication tools employed by users in their
work. Our contextual inquiries support this fact; our target users’ work is fragmented with
many interruptions and short task sequences, much of which comes in via email [V.1.b
Fig 6]. Since email is well known to be overloaded as both a communication tool and an
information repository, we noted that users could easily forget items, such as upcoming
meetings, or a task that they have planned to do some time ago but left only in email. By
gathering such emails together into the notification center, Stardust can prompt the user to

The three types of notifications

CALO Stardust 26

read important emails much like a human assistant might vet an executive’s inbox. In this
way, Stardust provides another level of filtering to keep information organized and the mail
client less overburdened.

Email notifications provide one added benefit as well. The literature and our contextual
inquiries both demonstrate that to-do items arrive in email often and are never transferred
anywhere else [V.1.b]. Most email clients are not designed to also function as to-do lists, yet
they end up serving that function anyway. The CALO AI is able to parse such emails and
add tasks to an actual to-do list, but it may not be obvious to users where the task came from
without context. One way to assuage this problem is to provide context to the automated
addition by only adding a task parsed from email while users are actually reading that
email. This way, they can infer that the task was added by seeing the resource that the AI
considered to determine that the task should be added. Such a strategy for showing system
reasoning was very popular in our concept validation, but it suffers from a major problem
[V.2.b Fig 23]. If users take a long time to get around to reading the email, the task could
not get added until it is too late. Email notifications allow the CALO AI to be proactive and
ask users to read emails that may contain tasks at their earliest convenience.

The final type of notification is the “CALO action.” These notifications inform users of
actions that the CALO AI has taken without direct user intervention. CALO can carry out
actions in many different places both on and off the sidebar, and our concept validation
strongly indicated that without an ability to supervise, users would be uncomfortable with
an artificially intelligent system [V.2.b Fig 27]. To alleviate this discomfort, the notification
center unifies important AI activities into one place. For example, a user may be waiting
for an expense report to be submitted from a colleague before he or she can balance
the company’s budget for this quarter. CALO learns from an incoming email that the
expense report has just arrived in the user’s email inbox, so when the user reads the email
it automatically shifts the “Balance budget” task from the On Hold subpane to the To Do
subpane in the Stardust sidebar’s task pane. Upon completing this change, a “CALO action:
‘Balance budget’ task is no longer on hold” notification would appear in the notification
center, allowing the user to see the change and be able to easily locate the task when he or
she is ready to complete it. Other actions that Stardust might notify users about include
changing the priority of a task above some threshold, adding or removing tasks or scheduled
events, seeking sign-off on some AI-automated task, etc. Our concept validation indicates
that the types of AI actions that require notification would vary from user to user and would
likely become less stringent over time [V.2.b Fig 21]. Users can learn to trust CALO—
keeping them up-to-date is a very important aspect of building that relationship.

Prioritization
As evidenced above by the task pane, a good concept of priority is paramount to Stardust’s
success at visualizing information in the limited amount of space available to the average
user. Notifications are no different, with the caveat that unlike tasks, users have no explicit
control over CALO’s prioritization of their notifications—they are simply not persistent
enough to require such interactivity. There are two broad categories of priority in the
notification center: urgent, and extremely urgent. Each notification in the notification

CALO Stardust 27

center has its own priority level, and anything above
an AI-determined threshold is considered to be an
extremely urgent notification. The display order of
the notifications is not dictated by the order in which
they appeared, but by their priority levels with the
highest-priority notifications appearing at the very top
of the Stardust sidebar. This is consistent with the task
pane, and Stardust’s overall paradigm for priority; the
user always knows where to look to see what needs to
be handled right now.

Both emails and CALO actions are usually urgent
notifications, while reminders, being time-sensitive in
nature, are always considered to be extremely urgent notifications. This special treatment
of reminders is justified by the fact that they necessarily pertain to users “right now,” and
if users do not attend to them, a breakdown may occur. In the case of email, Stardust only
displays notifications for important new emails. This is necessary because in our contextual
inquiries we noticed that many users tend to have a large number of new and unread emails
in their inbox at all times [V.1.b]. CALO can determine which emails require notifications
by parsing email messages and determining which ones demand users’ immediate attention
or affect the tasks that users have to carry out at the present time. CALO actions are similar
to emails; again, the AI determines which actions are important enough to warrant sending
extra information to the user based on the nature of the action and user preferences. Note
that in some cases, emails and CALO actions may also be extremely urgent; there exist
emails that require immediate response and AI actions that need immediate user feedback.

By having a two-tiered concept of priority Stardust is able to keep the user well informed
with up-to-date, important notifications, while also lessening users’ cognitive load by
reminding them of urgent items only when the appropriate time comes. In our findings
from contextual inquiries, we saw that our users generally have three categories of “work
piles”: tasks with imminent deadlines, tasks that are important but not urgent, and tasks
that have far off deadlines or no deadline at all [V.1.b]. The notification center adapts
this structure to notifications, allowing Stardust to coalesce lower-priority notifications by
type into “piles” of which only the topmost is initially visible, as described below. Besides
vertical ordering by priority, extremely urgent notifications pulse briefly when added and
remain a more vivid color than other notifications, while urgent notifications simply fade in
subtly.

Notifications that coalesce and break apart
Most email and CALO action notifications are urgent, but do not need users’ immediate
attention; however, extremely urgent notifications could have disastrous consequences if
they are not attended to right away. To make the division even more clear and make sure
that users do not tune out the extremely urgent notifications, urgent notifications coalesce
into groups by their type, while extremely urgent notifications, such as reminders, each
appear individually above the coalesced groups. In this way, we preserve the pile metaphor

Notifications ordered by priority

CALO Stardust 28

for urgent notifications, while keeping extremely
urgent notifications constantly in users’ visual field
where they can be read without even moving the
mouse. It is as if extremely important notifications
each exist on the top of their own pile so that they do
not get buried in the clutter of the rest of the screen.

Coalesced groups function more like an inbox, which
users check frequently but at their convenience.
Instead of having the text of the notifications
display their titles, coalesced notifications display
information about their contents such as “two new
emails,” or “six new CALO actions.” This gives
users a sense of how many urgent notifications are
building up, while requiring only one extra click to
get to the content of the notifications; moreover, it
saves a lot of screen real estate in the notification
center, allowing more space for other panes. Given
the ability to save space and ensure that extremely urgent notification are always the top of
the visual hierarchy, coalesced urgent groups seem to represent the best of both worlds.

Associated iconography and badging
In keeping with the general theme of Stardust, we visually distinguish between the types of
notifications using as little text as possible. This saves space and allows the text to provide
only content instead of being overloaded to also provide visual differentiation between
notification groups. As such, each notification type has its own unique icon designed to
provide enough information to motivate user interaction should a notification be added.
Our team was careful to choose our icons for both visual clarity from a design standpoint as
well as consistency with the intended Windows platform. We were careful to choose icons
based on their meaning in the Windows environment and not overload icons with multiple
meanings—actions that are significantly different (for example, delete and dismiss) deserve
different icons even if they seem similar to users. This task was complicated further by two
considerations. First, some actions have a side effect of training CALO implicitly, and we
wanted the icons to indicate what sorts of actions invoke this training. Second, the icons
are also intended for use in the Stardust mini-bar; here there is not enough space for text,
and as notifications come in only the corresponding icon is available to convey information
to users. This balancing act was not easy, but we are confident that our several rounds of
think-alouds ironed out some initial confusion about icon meanings.

To add necessary information to our icon set without making them prohibitively large, we
decided to pursue a badging scheme. While reminders are always considered extremely
urgent, there are also situations when emails and CALO actions also fall into this category.
When that happens, those notifications appear on the top of the list and are badged
with a yellow triangle containing an exclamation point, the universal icon for warning,
to indicate their urgency. To stay consistent and append useful information to coalesced

Coalesced and separate
notifications

CALO Stardust 29

groups, we badge them with a green circle and the numbers of items indicating how many
notifications are in the group. This works out well on the mini-bar, where the badge is the
only way to indicate that a group has a large number of items in it without requiring direct
user interaction. Overall, badging is a helpful way of visually distinguishing otherwise
identical icons to communicate the two levels of priority that exists in the notification
center. By using badges, the notification type can still be preserved, with urgent or coalesced
status appended. Badging is also an easy and economical way of displaying additional
information on the Stardust mini-bar, where text and space are scarce.

Labels
For the notification to be useful, it must display pertinent information in a very limited
space. In general, it needs to provide enough information to prompt user actions within the
space of one approximately 200 pixel long line. The problem becomes more pronounced
in the Stardust mini-bar where there is no space for notification labels at all. As such, our
team had to pursue a hierarchical strategy of labeling individual notifications. When
email notifications appear in the notification center, the title of the notification displays
first the name of the sender, then the email subject, and if there is space left, some of the
textual content of the email message. Reminders display a textual description and a time
added, and CALO actions only display description text. Each label is backed by a mouse-
over tool tip that will display the entirety of the label should it not fit onto the notification.
These choices reflect the results of our think-alouds where users expressed the desire to
see identifying information for emails, a brief description and time for reminders, and a
description for CALO actions [V.3.b].

Our strategy reflects users’ current work flows in which emails are labeled by sender and
subject, while reminders from programs like Outlook calendar simply show a time and
description for schedule items. CALO actions are more novel, but in concept validation,
users seemed comfortable with compact descriptions of actions given that there is a way to
access more context should users be interested further [V.3.b Fig 23]. By keeping the most
important identifying information up front, we are able to cut off the text at the width of
the sidebar without losing notification identities; the tool tip reinforces the full message
should it be needed. Our users did not have major problems identifying notifications in our
think aloud tasks so we are confident that our labeling scheme is sufficient. The fact that it
generalizes neatly down to the Stardust mini-bar is an added bonus.

Directing users to appropriate places
Due to time constraints, our prototype does not implement this functionality, but ideally
it would integrate with the user’s default email client as well as other applications. The
Stardust notification center acts as a central location for items that CALO feels users needs
to handle in the near-term future. To provide a real benefit to users, it also needs to act as
a staging area to get to the locations in which work will actually be performed. In keeping
with Stardust’s organizational paradigm, users should be able to click through notifications
to reach associated items. For example, a single click on a CALO action notification that
reads “A new task has been added” would then highlight that specific task in the task
pane that it is referring to. A double-click on a notification should open a corresponding

CALO Stardust 30

application: for example, a double-click on an email
notification would open the user’s email client and
focus on the associated email.

Directing users to associated tasks, resources, or
applications provides several benefits. First, by
leveraging the notification center as a task staging
area, Stardust encourages users to consistently refer
back to the sidebar when they need information.
Users can simply view the notification, then quickly
and easily go to the appropriate place where they can
either carry out the task or view more details about the
notification. Thus CALO becomes more integrated
with non-CALO applications and users begin to feel
the benefit of having sidebar information available all
the time. Further, this convenience can encourage users to carry out CALO-suggested tasks
right away when they check the notification, and not delay it for later, requiring a second
notification by Stardust. Finally, with the user more apt to pay attention to the sidebar,
Stardust is able to more effectively demonstrate that the system is learning for the users’
benefit.

Notification dismissal
Our literature review and contextual inquiries both
indicate that the average target user will have a
substantial number of urgent notifications at any
given time [V.1.a, V.1.b]. Space is at a premium, and
if the notification center gets too cluttered, it loses
much of its benefit. As such, stale notifications need
to somehow be dismissed from the sidebar. Stardust
uses two strategies to achieve this goal: automatic
dismissal and manual dismissal that trains the
CALO AI. Notifications automatically disappear
after Stardust thinks that the user has carried out
the action that the notification is informing him or
her to do. For example, if a new email notification
comes in to prompt the user to check his or her email
inbox, the notification would disappear once the user has read the email. In our concept
validation and think-alouds, we found that users neither need to see nor want to deal with
notifications after the certain task or event has occurred [V.2.b Fig 21, V.3.b]. Usually,
in currently existing notification systems, a notification would go away on its own after
its purpose is served; users are often just too busy to manually deal with getting rid of a
notification. We employ the same metaphor in Stardust, but the CALO AI allows us to
go several steps further. The sidebar is designed to use its intelligence to support user’s
progress and constant changes in his or her work flow. Therefore, it can dynamically refresh
the notification center at all times as users’ circumstances change. Having CALO Stardust
intelligently carry out actions without user intervention is the unique power behind CALO.

Opening an application from
a notification contextual menu

Dismissing a notification with
a red delete button

CALO Stardust 31

Sometimes, however, the AI will be incorrect or slow to respond to removing a notification.
Notifications, by virtue of their transient nature, cannot be richly modified by the user.
While it makes sense for users to be able to edit their tasks and their schedule items’ details,
it would not be useful for them to modify a notification because, after all, notifications
exist only to inform the user. Any change that the user makes to a notification would
serve no useful purpose—the user has already been notified. Notifications can, however,
be dismissed, or if they were incorrect (generated according to invalid assumptions by the
CALO AI), the user can bring up the contextual menu for a notification and select either
“This is incorrect,” “This is almost correct,” or “More training.” This matches our right-
click metaphor for keeping CALO training readily available but just out of the user’s way.

It may seem that users would be unlikely to use this level of training with something
as ephemeral as a notification, and our concept validation bears this out [V.2.b Fig 23].
However, notifications are singularly informative learning opportunities for the CALO
AI because the notification center is one of the only places where the Stardust interface
can directly confront the user with items that are the product of CALO’s intelligence and
assumptions. In other places in the sidebar (with the exception of the CALO Suggestions
pane), Stardust indirectly presents its activities to the user under the guise of modifying
already extant to-do lists and schedules. Here, CALO implicitly learns slowly from the user’s
modifications. However, in the notification center, user feedback on explicit notifications
allows the CALO AI to learn much more directly and precisely.

Animation
Much like in the task pane, we use animations in the
notification center to demonstrate when CALO performs
actions without user intervention as well as to make the
sidebar more visually appealing. Further, we leverage
animations to focus user’s attention without an unacceptably
high level of intrusion. When extremely urgent notifications
appear in the notification center, they pulse for three seconds,
then remain yellow until the user attends to them. Other
urgent notifications would simply fade in to the notification
center, and if they were to be coalesced into a group, the
coalesced group would simply increase the number of
notifications in the group title. From our findings from
contextual inquiries, we found that users had many different
opinions regarding an appropriate level of intrusion for
notifications—some individuals prefer something invasive
to motivate them to attend to the matter, whereas other
users prefer to have more subtle reminders [V.1.b]. Thus,
notifications intrusion levels must be user configurable with a
reasonable default setting.

Our team decided to provide non-invasive, but persistent
notifications by making them pulse non-abrasively in a

Animating an extremely
urgent notification on
the mini-bar

CALO Stardust 32

steady manner. Making them pulse instead of flash makes them less intrusive. This is very
important, as we observed some users who have abandoned notification systems all together
because of invasive animations [V.1.a]. Allowing users to set intrusiveness preference
settings is an even better option, but as a proof of concept in our think-alouds our middle-
of-the-road animation approach appeared to be at least minimally sufficient [V.3.b]. After
pulsing, extremely urgent notifications remain yellow to add a bright and solid color in
the user’s peripheral vision as he or she works, serving to shift user’s attention for these
immediately important items. This is necessary because highly engaged users may miss the
animation if they are attending to other parts of the screen. Other notifications of lower
priority do not pulse or have an additional color, serving to act as a contrast and keep the
extremely urgent separate from everything else.

Sizing strategy
Even after all of our trouble to reduce the size of the notification center, we realize that
there may be more notifications than could be shown in a fixed area. Thus, either the
center has to be scrollable or it has to resize. To keep all notifications visually persistent, we
chose the second option. The vertical space of the notification center is enough to display
three notifications, and if more non-coalescing notifications appear, the notification center
pane automatically expands downwards and proportionally reduces the size of the panes
underneath it. This all happens without user intervention—in fact, users cannot resize
the notification center at all. Our contextual inquiries conclusively indicate that urgent
notifications need to be visible at all times, so we do not allow the user to inadvertently
make the notification center too small to display everything that it needs
to display [V.1.b].

We settled on having the notification center be large enough by default to display three
notifications because we expect on average for there to be two coalesced groups (email
and CALO actions) and perhaps one extremely urgent reminder. We do not want changes
to the notification center to move other panes very often because it is disruptive to user’s
work. However, space is scarce and we do not wish to make the notification center
unnecessarily large. Thus, we decided to make it big enough so that a reasonable number
of notifications will fit without the notification center resizing itself, with “reasonable”
defined as the number of notification groups that we expect to exist on average. In the case
that the notification center does have to resize and push other panes downwards, it would
be in a situation where there are a large number of incoming notifications that are of a high
priority. In this circumstance, it is acceptable and indeed unavoidable given the other space
and visibility considerations to disrupt user’s work by resizing the notification center.

The notification center miniaturized
While we can simply hide other Stardust panes behind icons in the mini-bar, notifications
must be visible no matter how small the sidebar becomes. As such, the mini-bar notification
center warranted a full redesign. As described above, mini-bar notification groups are
labeled only with icons, dispensing with text labels to save precious space. To get to the full
notification, users can simply click the notification icon and the full text notification will
appear to the left of the sidebar. This pop up is fully consistent with the full sidebar view, so

CALO Stardust 33

users familiar with one version can easily transition to using the other. So as not to lose too
much space, only one notification group opens at any given time; opening a new one closes
the last view open. Likewise, clicking again on the icon of an open group will close the
pop up. Thus, we preserve as much screen real estate as possible without losing any of the
functionality of the full sidebar notification center.

Making the notifications openable solves most of our screen real-estate problems, but as we
verified in our prototype think-alouds, extremely urgent notifications can easily get lost if
they are not made especially visible [V.3.b]. Our pulsing and coloration solutions still apply
to the reduced notifications, but we felt that extremely urgent notifications needed even
more of a visibility boost. Our solution borrows from the Mac application Growl; when
high priority notifications arrive, they are disclosed for a few seconds automatically and then
return to the mini-bar by themselves. The animation draws the eye, and the user can read
the notification without the extra click required to disclose a notification, dealing with its
content right away as necessary. In this way, we can force extremely urgent notifications to
be visible while still working within the confines of a tiny sidebar.

d. Task viewer

Our contextual inquiries showed
that our target users fall into
several distinct demographics
with regards to task management
strategies [V.1.b]. Some exert
minimal control over their to-do list,
preferring simply to jot down notes
to prompt themselves to remember
the important details. Others,
however, expend a great deal of
effort managing their tasks, adding
metadata and investing an inherent
semantic meaning in task ordering.
For these users, the limited search
functionality, space constraints,
and above all the enforced ordering
by priority in the Task Pane does not permit them the freedom they need. Our concept
validation revealed this same divide among our user base, and we found that this latter
management strategy was common enough to warrant an interface directly supporting this
need [V.2.b].

Since the purpose of the sidebar is explicitly to show users information that is relevant to
their immediate situation, the sidebar is not an appropriate place for a feature such as this,
which is intended for planning and high-level organization of things that may not be directly
relevant for quite some time. Therefore, although not implemented in the prototype, the

The task viewer that users can access via Stardust

CALO Stardust 34

Task Viewer is intended to appear in a separate window, and be accessible from the task
pane and the sidebar’s icon well.

Sorting and filtering
Users expressed a desire in our concept validation to exercise control over the order of
the tasks in their to-do list [V.2.b Fig 18]. Several mentioned that they needed to see tasks
related only to one project, or to sort tasks in order by due date, or to see starred tasks before
those that are not. To accommodate these needs, the Task Viewer has rich sorting and
filtering capabilities similar to those found in the Explorer application of Windows Vista.

In addition to the “search field” interface also used in the Task Pane on the sidebar, users
can see various metadata related to a task (such as its project, tags, due date, etc.) and sort
tasks on those metadata by clicking sort buttons (these buttons, which resemble column
headers, also appear in Windows Vista’s icon view) at the top of the window. As in the Task
Pane, tasks can be expanded to allow the user to see more information about them, and
associated resources for each task are made available here as well. The resource lists in the
task viewer include more associated resources than those in the Task Pane, however, due to
the reduced importance of space considerations.

In addition to these sorting features, the Task Viewer employs a more powerful and
flexible filtering mechanism, again based on that used in Windows Vista’s Explorer. The
sort buttons are attached to auxiliary buttons that trigger pull-down menus containing
filtering options for the button’s metadata type, organized intelligently into groups with a
check box beside each. Checking one or more boxes filters the task list to only show those
tasks matching the selected criteria. Multiple metadata can be filtered on simultaneously,
allowing users to visually build simple filter queries connected with an implied AND
operator. A button is provided to quickly clear the filter and show all tasks, and similar
options are presented to clear each button’s filters individually.

Drag-and-drop
One of the features of the Task Pane in the sidebar is the ability to change the priority
of tasks by directly re-ordering them via drag-and-drop. This feature is conspicuous in
its absence from the Task Viewer because its semantic meaning depends on the fact that
the tasks are always ordered by priority. In the Task Viewer, where the sort order is user-
defined, it is unclear what dragging-and-dropping tasks would imply: if the user is sorting
by due date, for instance, and the task is dragged between a task that has a due date and a
task that does not, to what should the task’s due date be set? The user’s intention here is
functionally impossible for a computer to accurately divide, regardless of the level of AI
employed by the system.

Separation of complete and on-hold tasks
Another difference between the Task Pane and the Task Viewer is the way in which
complete and on-hold tasks are separated from other tasks. In the Task Pane, there are
separate subpanes for each task, but again this forces an ordering on the tasks that the user
cannot override. In the Task Viewer, “Status” is provided as a sorting and filtering criterion,

CALO Stardust 35

so the user can approximate the ordering of the Task Pane by sorting on Status: on-hold
and completed tasks will be sorted below active ones. However, the user is free to override
this ordering at any time and see only the tasks they decide are interesting at that moment
in the order they think is more appropriate, satisfying the user need of freedom in task
visualization and organization.

e. Schedule pane

We decided to incorporate a visualization of the day’s schedule into the sidebar due to our
contextual inquiry observation that many target users have their calendars constantly open
or easily accessible in order to view the upcoming events in their day. In the case that users
had multiple monitors, especially for assistants, it was not uncommon for the calendar to
occupy one of their monitors. Thus, when designing Stardust, the question in our minds was
not whether to include a persistent calendar, but instead to decide what visualization of the
calendar to present inside the sidebar and what interactions to allow the user to undertake in
such limited space.

Scope of schedule pane
Taking into account our limited space and the intended scope of the Stardust sidebar, we
deliberately limited the schedule pane’s scope to be less than that covered by a traditional
calendar. The entire pane only shows details for one day or a less detailed view for up
five days into the future (not counting weekends). The schedule pane does not show
information for more than a few days from now because, in keeping with the purpose of the
sidebar, it is not intended for planning. It is, instead, meant to help users orient themselves
within the day or week, and inform them of their scheduled events within that time frame.
Target users invariably already have a calendar system that they use for keeping track of
longer term goals. Moreover, based on our contextual inquiry observations, we feel that
a visualization of a few days in the future is usually sufficient to supply users enough
information to support their tasks for today. Any detailed future planning should be done
on the user’s original calendar application, a more specialized system. The sidebar is meant
to allow easy access to information that will help the user decide what task to do now.
Specializing it to be a full calendar application would adversely affect the rest of the sidebar,
an unacceptable alternative. By allowing the user to double-click through the pane to reach
their default calendar, we hope to keep the connection between sidebar and the rest of the
user’s work flow tightly coupled without sacrificing Stardust’s focus on “right now.”

Block and agenda views
The schedule pane consists of two mutually exclusive views, block and agenda. The block
view shows the user’s engagements as blocks of time with a size proportional to their
duration, in similar fashion to the Google calendar day view. However, in contrast to a
schedule like Google calendar, the top of our schedule pane schedule anchors itself a half
an hour behind the current time. For instance, if it is currently 10:30 am, the top of the
block view would represent 10:00 am. From this anchor point, the user can see the day’s
meetings and events with proportional gaps of space where no events are placed. This

CALO Stardust 36

reflects a contextual inquiry observation that many
users planned their to-do orders around the fixed
items in their schedules. The block view has no
scroll bar, since a scroll bar would not permit “now”
to remain at the top of the sidebar at all times.
Instead, the user can zoom in and out to see more
or less time in whatever space is available while still
seeing the titles for each event. Since the Stardust
sidebar is designed to show information necessary
right now at a glance, the block view allows the user
to visualize the timing from now into the near future
without having to manually adjust anything on the
sidebar. Only when he or she wishes to zoom out
and see more time does the user have to interact with
the schedule pane.

Block view is very useful for planning a few hours
ahead, but it also fills a large amount of space with
empty time blocks. As the user zooms out, these
blocks become increasingly wasteful, preventing
him or her from easily seeing pertinent information.
The agenda view shows a list of scheduled items
for the next five days in a textual form similar to the
Google calendar’s agenda view. By eliminating blank
space, we allow the user to perform less fine-grained
planning for several days in the future. Both our
contextual inquiry and concept validation indicated
a diverse set of user preferences when it comes to
organizing schedules, so we allow users to easily
switch between these two modes to obtain the benefits
that they find most appealing, be it rich visualization
or the ability to plan further into the future [V.1.b,
V.2.b]. By scaling smoothly from great detail about
one day to a summary of several days in the future
while still keeping “right now” in a fixed place, the
schedule pane is able to support planning while
remaining flexible.

Given the time constraints under which our prototype was developed, only the block view
has been implemented.

Anchoring
As described above, the block view enforces the concept of anchoring the top of the pane to
one half hour before the current time. While settling on the idea of anchoring we came up
with several competing options. One was to anchor the view at the start and the end of the

The block view of schedule pane

(Wireframe) Agenda view on the
schedule pane

CALO Stardust 37

day, allowing users to see their whole day at a glance, but in this view seeing event details
and accommodating non-traditional hours becomes difficult in limited space. Another
option is not to anchor the calendar at all and simply show several hours of the day along
with a scroll bar. In this way, users have the flexibility of viewing any time of the day;
however, they lose the benefit of the system adjusting to show the current time so that they
can effortless plan the near-term future. Given the focus of the Stardust sidebar on the here
and now, it seemed inappropriate to allow the user to move away from the current time. To
this end, we considered anchoring only the top of the block view to the current time, but in
concept validation, we realized that users may be running behind schedule and may want
to see items in the past [V.2.b]. To solve this problem we adapted this option so that the top
of the pane always show half an hour behind the current time. In the end, we chose the one
end anchoring scheme to ensure that users would be able to see how much time is left before
their next scheduled item while still allowing them to zoom to a desired level of detail.
Furthermore, this type of anchoring correlates best with one of the main initiatives of the
sidebar: managing user tasks so they can work efficiently and accomplish more by helping
them more easily decide what to work on next.

Zooming
Our navigation paradigm, zooming, is featured in both block view and agenda view. There
are two buttons at the bottom of the schedule pane, a magnifying glass with a minus symbol
and another with a plus symbol. Using the minus magnifying glass the user can increase
the amount of information shown because the schedule zooms out to show a larger time
range. Conversely, the plus magnifying glass zooms in to show a smaller range of time
with more detail. Further, when the user zooms out beyond the point where block view is
useful, block view becomes schedule view and vice versa upon zooming in. We settled on
zooming to avoid using a scrollbar, which could move the current time out of the pane’s
preview, while still allowing the user to adjust his or her preferences for detail versus amount
of time displayed. To counteract the problem of inflexibility that comes from an anchored
schedule, we included zooming to be able to see later in the day in block view. However, in
user tests with paper prototypes, we found that users tried using the zoom buttons to see the
next day in their schedule. Therefore, we decided to put zooming in both calendar views
for consistency’s sake and have the block view switch to agenda view when the user tried to
zoom out so much that the lack of detail would no longer be useful. In this way, it is always
clear how to get to any level of detail in the the schedule pane within its time frame.

Editing event details
Much like a regular calendar, every event field in the schedule is intended to be editable by
the user. We chose to make the fields in the schedule editable not only to be consistent with
the task pane, but also to make it easier for users to deal with scheduled items directly from
the sidebar. Since it takes no more space to make fields editable than the space it takes to
display them, this design decision seemed obvious, although there was not sufficient time
to implement it in our prototype. Ideally, any changes made in the sidebar would also be
reflected in the original calendar that exists in the user’s calendar application since it is still
intended to be user’s main long-term scheduler. Finally, as in the rest of Stardust, editable
fields also teach the CALO AI by letting it know that something was wrong and providing
the correct information while simultaneously providing direct benefit to the user.

CALO Stardust 38

f. Packs

Packs is a concept extended from
SRI’s PrepPAK, but was not
implemented in this prototype. One
major strength of the CALO AI
is its ability to detect patterns and
relationships in order to understand
user’s work. With this knowledge,
the system can figure out what
resources users might need while
working. Our background research
in information management and
concept validations helped us define
how such an AI system could best
help the user [V.1.a, V.2.b]. The
“pack” feature in CALO Stardust automatically generates and dynamically updates a set of
resources associated with a particular meeting, task or event for the user.

Pack view
A pack exists to collect and display all the resources that the AI considers relevant for a
task, meeting, or event. For example, if the user requests a pack for a given meeting, the
pack window would show files such as PowerPoint presentations, Word documents, links
to websites, or other notes that user would need for that meeting in a pack window. The
concept of pack is loosely based on CALO’s “PrepPAK,” which allows users to gather
resources needed for meetings specifically. Backed by similar requirements from the AI, we
expanded the concept to apply to a more general set of events. Upon testing our extended
idea in a concept validation, we found it to be a very popular idea across all target users
[V.2.b Fig 20]. Further, we found that in addition to meetings, users have many other tasks
with associated artifacts and resources. Collecting these resources automatically resonated
strongly with users.

Consistency with Windows Explorer
Our team consciously intended the pack window’s interaction and visual look and feel to
be similar to a Windows Explorer folder window. The interface looks very similar to a
Windows folder and the main mode of interaction involves selecting a file with a click of a
mouse or selecting multiple files by pressing the “Ctrl” key while clicking on files.

Our decision to design the pack window to look like a Windows folder stems from two
major reasons. First, it leverages current successes in CALO Express, which uses a similar
interaction for its PrepPAK feature. Second, much of the interaction with the pack includes
filtering, sorting, and selecting files, use cases already supported in a recognizable way by
Windows. By using known interactions, we can reduce the learning curve of the interface
while still allowing the user to organize robustly.

(Wireframe) The pack view that users can access by
clicking on the pack icon on Stardust

CALO Stardust 39

(Vista) Grouping files by type

A Windows Vista Explorer folder (Vista) A folder with an active filter

(Vista) Filtering by name

(Vista) Stacking files by type

CALO Stardust 40

Users can sort items in the pack view on a number of different metrics by clicking on
the columns at the top of the window. The user is also able to search for items using a
Windows-style search field. We felt that it was important for users to be able to control the
information in the Pack easily, because in our contextual inquiries we learned that some user
tasks include handling and organizing a large number of files [V.1.b]. Therefore, we wanted
strong filtering and sorting abilities in the pack to assist the volume of artifacts that they
manage. Further, given that our pack view will be populated by an AI algorithm, we needed
contingencies for users to sort out and remove the inevitable incorrectly added items. In the
course of designing our pack view, we found that Windows Vista has powerful and intuitive
filtering and sorting methods, so we modeled our interaction to be consistent with the Vista
operating system. Our think aloud user tests with paper prototypes also confirmed that
users were relatively comfortable with using the Vista-style filtering and sorting interaction
[V.3.a].

Automatically updating items
Overtime, the pack view automatically updates to change the items that the AI thinks have
associations with the selected task or scheduled event. This is powerful benefit provided
by the CALO AI, but it presents some problems from users’ standpoint. The items in
a pack window for a given event can potentially be different any time users request a
pack. As such, our team needed to design a way to allow the system to maintain dynamic
flexibility while still making it clear how to save truly pertinent information. The first step
is to allow users to modify the pack to actually meet their needs. If there are items that
do not belong, users may remove them from the window and the AI will learn from user’s
actions. Likewise, users can manually add files into the pack and the system will learn the
association. In both cases, users can use normal Windows file metaphors like delete and
drag to accomplish their desired organization, supplemented by right-click training options
should he or she desire to train the AI explicitly. In summary, the pack view usually uses AI
to automatically change items in the view so that users do not have to update it themselves,
but we also consistently present the pack view as a virtual directory that users can always
edit on their own.

Representing items as shortcuts
The file system metaphor is useful for motivating our intended interaction with the pack
view; however, our concept validation brought up one major problem—users are not
comfortable working with real files unless they are absolutely sure where they exist on disk
[V.2.b Fig 20]. Losing any file is a catastrophic failure. This perception was proved by later
interviews: target users expressed their hesitation to move, remove, or add items to packs
because they thought that they were actually deleting or moving a real file on disk. To
assuage this problem, we decided to leverage another concept from Windows, the shortcut.
Shortcuts exist to allow users to manipulate a pointer to a file—if it is moved or deleted,
users know that the real file is still in its original condition. This is exactly the guarantee
that we want for items in the pack view; as such, all the items in the pack now have a
shortcut badge over their file icon to indicate that the items in the pack are actually shortcuts
to the actual files in the directory. This makes it clear that when interacting with the pack
users are managing a combination of resources, but not working directly with actual files.

CALO Stardust 41

Their actions will affect the pack and consequently the CALO AI, but they will never affect
files on disk.

Saving
As described above, when users create a pack, the files are not yet in an actual directory,
but represented in shortcut form in the pack window. The content of the pack can change
dynamically, adding newly pertinent files, deleting newly irrelevant files, and resorting as the
AI’s understanding of the association changes. Further, users are able to customize the pack
by adding or deleting files in the pack view window. Our concept validation indicates that
such dynamism could be confusing to users who expect file explorers to change infrequently,
and only in direct response to a user command [V.2.b Fig 20]. Therefore, we introduced
the concept of saving a pack to ensure that a particularly useful pack’s content will stay
fixed. When users save the pack, they are deciding to keep a fixed copy of this specific
combination of associated items saved into an actual folder. Thus, the pack is transformed
from a virtual directory into a real folder on Windows, disassociated from the CALO AI for
purposes of updates. The concept of using save to create an actual folder is similar to the
“smart folder” concept used by the Mac application Spotlight, but at first we were worried
that Windows users would be confused with by a menu item labeled “Save” in a window
that already resembles a folder. However, we found in paper prototypes that users did not
have major problems using or understanding the save feature [V.3.1 Fig. 31].

g. CALO suggestions

The CALO AI is currently able to deduce what users are working on by analyzing the
windows that are in focus and presenting suggestions based on that knowledge. Its
sophisticated AI can determine what users are working on and leverage its database of
knowledge to help the users. In Stardust, we created the suggestion pane because, although
there are many ways for users to interact with the system, there are very few ways for CALO
to initiate action with users. The suggestion pane provides a way for CALO to present its
suggestions and use its knowledge to help users. Placing the suggestion pane on the sidebar
(as opposed to integrating it into individual windows) is also convenient for users because it
makes it easier for users to learn that the same location always presents the AI’s viewpoint.
Moreover, it is far easier from an implementation standpoint than attempting to integrate
CALO’s interface into numerous third-party applications. Upon further examination, we
realized that in the mini-bar, the items in the CALO suggestion pane are not visible, and
users would not be aware of the actions CALO could perform. In this case, the CALO
suggestion icon changes its color to indicate that there are new CALO actions available for
users. Due to the lack of any real AI backing our prototype, the CALO suggestions pane is
currently implemented only as a static view with no interaction.

Relevant resources and CALO actions
The CALO suggestions pane shows resources and CALO actions that are related to the
window users have focused. For instance, if users are reading an email, then the CALO
suggestion pane will show files, people, and websites that pertain to that email. When there

CALO Stardust 42

are actions that the system can perform, for example
task automation, the actions will also be listed in this
pane. According to our concept validation, relevant
resources similar to those shown in the pack window
are perceived as quite useful [V.2.b Fig 20]. Therefore,
CALO suggestions also extends this concept by
allowing a few highly-relevant resources to be easily
accessible without creating a pack. CALO actions
also exist in this pane because it provides the Stardust
sidebar with its only way, outside the notification
center, to directly express that it has learned from
user’s actions and to communicate to users directly.
Since demonstration of learning is another highly important aspect of the CALO system in
general, the combination of visible resources and CALO actions serves the purposes both of
users and of the development team.

One final important aspect of the suggestion pane is that it displays a label indicating to
what window its suggestions refer. For instance, if CALO presents files related to the
PowerPoint presentation users are currently working on, then the CALO suggestion pane
will have the name of the PowerPoint file at the top. We found in user tests that people were
confused about what the files and actions in the suggestion pane were relevant to [V.3.a Fig
31]. Based on research into a similar interface problem by our client at SRI, we decided
that simply indicating the window the AI was referring to would solve the problem most
directly. Now users get relevant information and might be able to infer why the AI made
the decision, better helping to demonstrate learning and improving the overall Stardust user
experience.

h. Task automation

Currently, task automation is unimplemented in our prototype because it requires a serious
AI backend to support it. Though only visible on the sidebar as suggested actions in the
CALO suggestions pane, automation is an integrated feature of Stardust that plays a vital
role in managing the overwhelming tasks our target users face. From our user studies, we
found that users, especially assistants, could benefit greatly from the system assisting them
in completing repetitive tasks, if not taking them over completely. Our concept validation,
however, revealed the conditions limiting when users would accept and use task automation:
first, we found that users wanted to preserve their clear control over the system decisions,
and to correct mistakes easily [V.2.b Fig 23]. Secondly, they wanted the ability to have
Stardust partially automate a task and then hand it off to them to handle any details of the
task that change from instance to instance.

The CALO AI is already able to automate repetitive sequences of tasks via sophisticated
learning algorithms. There are two ways for the system to learn to automate tasks: either by
observing user actions over time, or from the explicit scripting from the users. There are also

The CALO suggestion pane

CALO Stardust 43

two ways for users to access task automation, from the CALO suggestions pane and from
the icon in the application access pane. The second option is suitable in cases users want
to initiate task automation instead of receiving suggestions related to open windows. The
CALO automation icon also provides a natural path to view the list of automated tasks and
make adjustments.

i. Learning log

CALO’s use of AI to observe and adjust users’ tasks is a novel concept which prompted
many users to want to track the progress of system learning. Although the notification
center displays the system’s actions, there should be a more permanent record for users to
refer back to. Stardust’s learning log serves this purpose as a repository for users and system
actions, as well as a place where users can fix any mistakes made by the AI. Tracking
system learning in turn requires tracking which user action led the system to learn particular
associations. Thus, the CALO learning log was created to document both user and system
actions so that users can check up on the AI’s activities if they so desire. These documented
changes are maintained at a finer granularity than the CALO actions that warrant a
notification to the users.

By keeping users and system activities together, we are able to leverage context to explain
system decisions. In our concept validation, users expressed the desire for an explicit
place to train the system; however, they did not seem comfortable with AI jargon such as
confidence level as an explanation of system reasoning [V.2.b Fig 23]. With that in mind,
we thought it was logical to integrate documentation and training in case users did not
understand why the system did something. Therefore, the learning log also serves as a place
for users to train the system by correcting any incorrect associations the AI has made. By
including contextual information, users may be able to infer the system’s decision-making
process more easily than they might be able to interpret a human-readable explanation
of CALO’s confidence level. While the user’s inference may not be technically correct,
the comfort gained by perceiving that he or she understands the system’s reasoning is
paramount. Additionally, in keeping with Stardust’s ubiquitous editability paradigm, users
can agree or disagree with CALO’s conclusions and responses from the learning log to
explicitly teach the AI. Manually training CALO Stardust allows it to learn much more
quickly than simply letting the AI observe the user’s actions over time. Though currently
unimplemented, the learning log would be accessible through the icon well at the bottom of
the sidebar, so that the comfort of seeing CALO’s reasoning is always a click away.

j. Icon well for application access

The Stardust sidebar has a number of hooks into the expanse of the CALO system, and
serves as a launch pad for interacting with the agent. However, there are use cases in
which the user may want to access CALO applications directly. To this end, the bottom
of the sidebar provides eight icons to bring the users to their task viewer, calendar, email

CALO Stardust 44

application, contacts list, CALO automation viewer,
learning log, preferences and help. Note that most
of these applications are internal to CALO, but
a few (calendar and email) are the users’ native
applications. We created this pane so users could
have easy access to frequently used applications,
both inside and outside of CALO, with the hope
that such ease of use would encourage users to
attend to the sidebar more frequently and discover its
other benefits. In our contextual inquiries, we found that overburdened knowledge workers
frequently use their email client and calendar, so we kept this in mind while designing
Stardust and included access to these high frequency applications in the sidebar alongside
other applications that we want to make readily available to the users [V.1.b]. The CALO
sidebar distills information to locations that help users get their work done in the moment.
However, less common, long-range planning tasks are best completed outside of the sidebar.
The icon well makes the transition between the sidebar and the rest of the users’ world as
simple as possible.

Several of the icons in the icon well allow access to applications that require no explanation
(i.e. the user’s native calendar, contact list, and email client as augmented in the background
by the CALO AI), and the task viewer discussed in more detail above with the task pane.
For a further discussion of the CALO automation view and the CALO learning log, please
refer to their detailed descriptions above. The two icons on the bottom left of the pane,
preferences and help, are less novel, but equally important. As a general HCI principle, it is
well known that persistent access to help is absolutely essential to a usable system. In an AI
system like CALO, the explanations available in help are all the more important.

This is also the case for preferences. If our team learned one thing about executive work
flows in our contextual inquiries and concept validation, it is that individual organization
preferences vary widely [V.1.b, V.2.b]. CALO has an advantage over other systems in that
it can learn and adapt itself to match the user work flow over time; nevertheless, for some
essential settings like notification intrusiveness and autonomy, it is preferable to allow the
user to set up preferences up front and at any time during their use of the system. The
first few days with CALO will likely constitute a critical period for continued use—if users
can specify preferences on set up and easily adjust them, it becomes far more likely that
they will adopt the system. Our research indicates that most users would be willing to try
out a system like CALO Stardust but would only continue if their initial user experience
was clearly more beneficial than it was annoying [V.2.a Fig.18]. Providing users with
upfront and accessible configurations is a big step in this direction. Along with obvious
demonstration of learning, our team is confident that CALO Stardust will provide enough
utility at a low enough cost to create an initial user experience that will keep CALO running
and learning on target user’s desktops.

The icon well

CALO Stardust 45

k. Wizard-of-Oz Implementation

We designed CALO Stardust to employ
SRI’s sophisticated artificial intelligence
engine to carry out tasks such as
prioritization, automation and learning,
yet integration with SRI’s AI engine would
require too many technicalities outside
of the scope of our project. However, in
order to effectively user test Stardust, AI
actions need to be taken and seen on the
Stardust interface. We decided to use a
method called Wizard-of-Oz to simulate
the actions the AI would have taken during
our user tests to get the most accurate
feedback on our design.

In a Wizard-of-Oz user test, the sidebar
prototype is run on one computer for
the user to interact with. Meanwhile,
an experimenter uses a second computer
to connect to and control the user’s
prototype to simulate the actions that the
AI would have taken. In our user tests,
the experimenter either sat behind the
user or looked to a projection of the user’s
computer in order to see what the user
was manipulating. When the user test
called for an AI action, the experimenter
would perform them from the second
computer to change the user’s interface on
the first computer.

In order to perform Wizard-of-Oz, our programmers designed an engine that allowed
us to mimic the actions the AI would need to take while users were interacting with our
prototype. Since we only tested the system automation on notifications and tasks, the
engine had two sections, one to control tasks and the other to control notifications. In the
tasks section, the engine gave us access to add new tasks to the user’s sidebar, set the tasks
priority level and due dates, as well as edit existing tasks. The priority numbers assigned
are relative to the priority numbers already in the task pane. The task will then be added or
reordered in the correct place based on the priority number. The engine also allowed the
wizard to delete tasks and move them to different subpanes. In the notifications section
of the engine, the wizard is able to add and change notifications while also setting all the
properties in each notification category.

The tasks section of the Wizard-of-Oz
interface

The notifications section of the Wizard-of-
Oz interface

CALO Stardust 46

With the Wizard-of-Oz method, we were able to test many of our concepts and usability
issues such as automatic task movement during prioritization, saliency of notifications,
and general interaction between users and autonomous agents [V.3.b]. The method itself
was sometimes difficult to use due to technical difficulties such as networking between two
computers. The experimenter also had to constantly be aware of the user’s movements and
sometimes improvise to match the testing goals and specified interaction with the user’s
actions. For instance, if the user did not read an email that assigns the user a task, then
the experimenter should not add the task because the AI would not add tasks until the user
reads the email. Overall, Wizard-of-Oz allowed us to user test early in the implementation
stage and without having to integrate Stardust with the artificial intelligence back-end.

IV. Future steps

Given our team’s limited time and resources, there are components of CALO Stardust we
envisioned but did not fully flesh out with details nor implement in our prototype. Most
of these are visions that came up during our ideation that were beyond the scope of our
project.

1. Task relationship view

During our contextual inquiries, our team noticed
users need to visualize the relationships between
their tasks [V.1.b]. These tasks depend on several
dimensions such as resources, people, and simple
ordering considerations and each have different
priorities. The task relationship view is intended to
be a graphical visualization of users’ tasks and the
connections and relationships between them, laying
the tasks out across their dimensions of connection.
Imagine a tag cloud over user tasks. The closer the
tasks are, the stronger their associations and bigger
the tasks are more urgent they are. The pending tasks
are represented with connecting arrows to indicate
tasks’ dependencies among each other. We envision
this view as an on-demand window accessible from
the task viewer to facilitate the somewhat infrequent
use case of planning out tasks in over a long period of
time.

(Initial idea) A task relationahip cloud

CALO Stardust 47

2. Automated skill transfer

CALO Stardust already adapts to individual user behavior, but our contextual inquiries
identified further opportunities for the system to learn industry or company specific details
and standards [A 1.b]. Such wide-ranging skills could potentially be transferable to other
employees within a similar domain rather than having every employee spend effort training
the same principles. For example, it would be very useful to transfer a skill like arranging
travel expenses in the company that a CALO has learned through careful training by one
user. Further, a robust skill transfer system reflects currently observed work practices; it
is common for an executive to seek help from other people’s assistants in the case that the
assistant has some specialized knowledge. If CALO could reflect these extant practices,
the AI may be able to leverage its training from the feedback of a number of individuals,
increasing learning speed and accuracy, and thus improving the CALO user experience in a
very general way.

3. Collaboration: assistant and executive

Collaboration is a large opportunity area that CALO has yet to fully tap into. One possible
area is supporting the relationship between executives and their human assistants. Although
CALO mimics many of the actions that an assistant would take, our contextual inquiry
results indicate users would find it preferable if CALO instead focused on supporting
the relationship between the executives and assistants rather than replacing the need for
assistants all together. Through our research, we’ve found that assistants usually have access
to the executive’s calendar and email in order to be able to better serve and organize them.
By giving assistants access to an executive’s CALO, an assistant would be able parse the
information constantly coming to the executive and share these important tasks and events
directly through the sidebar. By better supporting repetitive components of assistants’ work
flows, CALO can free them up to concentrate on the more important, person-coordination
aspects of their job. In this way, agent and assistant can work together to raise productivity
for everyone for which they are responsible.

4. CALO mobile

Our final vision, CALO mobile, is a hardware concept that addresses the portability of
information CALO holds as well as the screen real estate that the sidebar takes up. CALO
mobile would be a PDA type device that could synchronize with user’s monitors. While
docked, the PDA would act as a second screen that users could seamlessly interact with
from the main monitor. The second screen would display the sidebar for users to add tasks
and resources to. When users are away from the desk, CALO mobile is still active to remind
them of time sensitive events along with constant access to important information. Coupled
with other capabilities like CALO’s Meeting Assistant which automatically transcribes
meetings and creates action items, CALO mobile could be a impressive way to integrate

CALO Stardust 48

V.	 Appendix

1. Research

a. Literature review

CALO is a highly complex system, the design of which draws upon many well-researched
topics in computer science, human-computer interaction, and other fields. Our research
goal was to familiarize ourselves with these topics and determine what impact each research
area has had on the development of CALO up to this point, and how this research is likely
to continue to affect it in the future.

Based on our exploration of the CALO publications and those of related projects, the four
themes that appear to have most directly impacted CALO’s development can be grouped
into collaboration, information management, agents, and multimodal interfaces. The
applicability of research into agents is certainly not in doubt given the nature of CALO, and
that collaboration and information management should be a major factor is evidenced by
the fact that many of CALO’s major subsystems (such as the meeting assistant, PTIME,
and Towel) are all information management tasks geared at least in part toward facilitating
collaboration between CALO users. Multimodal interfaces are not particularly integrated
into CALO at this point in time, but they are associated with context-aware computing and
software agents in the literature for some time, and there seems to be considerable interest
on the part of the developers in making multimodality an increasingly important part of
CALO’s user interaction. For this reason, we considered them to warrant further study as
well.

Collaboration
In our review of literature pertaining to CALO, we first focused on the ways people
collaborate with each other and the ways that software (especially agents) can support this
interaction. As early as 1990, Grosz and Sidner [21] theorized that successful collaboration
stems from mutual understanding about the goals, action, capabilities, intentions and
commitment of the participants who collectively form a shared plan. However, Barthelmess
et al. [4] observed that current collaborative technology is disruptive and does not support
natural human to human communication. Rather than a series of user-command and
system-display turns, they suggest a system with several unobtrusive sensors that recognize
and process interaction in the background while creating appropriate artifacts. Multiple
modalities are explored to construct a system that proactively identifies user’s intentions.

One large area of interest in collaboration with human users is the realm of intelligent
interruption management. From a theoretical angle, Iqbal and Bailey [24] examined the
feasibility of building statistical models that can detect and differentiate three granularities
of perceptually meaningful breakpoints during task execution, without having to recognize
the underlying tasks for determining the breakpoints for optimum interruption. Fogarty
et al. [19] used a variety of sensors to improve an agent’s ability to interrupt human users

CALO Stardust 49

at more appropriate times. In an experiment with users performing a programming task,
the sensor-based system was able to determine interruptability correctly 72% of the time,
and the research discussed what sort of sensors are most useful for inferring context in
programming tasks. Such a system may be useful in CALO, but more research would be
necessary to determine appropriate sensors for context-awareness in non-programming
situations.

Avrahami and Hudson [2] found that IM conversations offer several benefits for users,
including the ability to selectively attend to or ignore messages, but are typically highly
interruptive and do not allow users to easily prioritize important questions and information
above less important messages. They successfully implemented an IM plug-in to determine
whether incoming messages were likely to be important, and choose whether to interrupt
the user depending on this determination. Adamczyk and Bailey [1] devised an interruption
management system for monitoring and specifying user tasks using physiological measures
of workload and task modeling techniques in order to systematically and automatically
identify opportune moments in a user’s task sequence to mitigate the negative consequences
of interruptions by notifications.

Another large area of collaboration research is in ways to support cooperation via email,
a heavily overburdened system. Dabbish, Kraut, Fussell, and Kiesler [15] proposed a
model of email use to predict whether or not a given email will be replied to, with the some
modeled factors including using inbox visibility for reminders, keeping information requests
and responses in the inbox, and responding to but not filing meeting requests. Using action
requests, status updates, reminders, information requests and responses, scheduling requests
and responses, and social content as proposed email types, the authors were able to use a
regression model to match email importance to likelihood of response. They found that
content, job complexity, and sender characteristics are good indicators of response, and
that the identity of the responder plays a larger than expected role in predicting filing due
the tendency of people to either sort or search their email but not both. Again leveraging
email’s multiple uses, Shen, Li, Dietterich, and Herlocker [43] described TaskPredictor, an
application that uses Naive Bayes classification and confidence thresholds to try to guess
what task a user is currently performing based on what system resources are currently
being used. Tests on a corpus of email showed an promising 80% classification accuracy
that could possibly be improved through more computationally expensive methods such as
Hidden Markov Models.

A final area of collaboration support is in the realm of agents to help schedule and
document human meetings. Faulring and Myers [18] presented Rhaical, an intelligent
calendaring system that proposes natural language support and novel visualizations to help
users when scheduling meetings for multiple parties. The agent might contact users to verify
assumptions, get confirmation, and allow the user to understand and control its behavior
through natural language processing and manipulation of a calendar visualization. For
actual meeting documentation, Ehlen, Niekrasz, and Purver [17] described the CALO’s
Meeting Assistant. This assistant analyzes multi-party speech and handwritten input,
identifying the meeting’s topics and action items, and displaying a high-level summary

CALO Stardust 50

report (along with the user’s own manual notes) in a browser, so as to compel users to make
manual corrections, and to suggest action item transfers to other agents such as the Towel to
do manager. The combination of user feedback, integration of analyzed input and manual
notes, and collaboration with other agents produces a highly personalized representation
that parallels the user’s perception of the salient aspects of the meeting.

Information management
Information management, including the organization and retrieval of information, is an
increasingly complex problem as the amount of data users encounter continues to grow.
Several tools have been developed to support users and their data such as email, to do lists,
and calendars, but these applications are often overloaded and have weak boundaries. To
address this problem, information management has been moving from manual tasks done
by the user to more agent-based applications for automating processes. Several parameters
have been studied, such as the hierarchy knowledge workers employ to organize their
information that would better support their work flow in the contexts of email and file
folders. Research also spans on other applications that are designed to convey information,
send reminders, handle task management and regulate scheduling.

Boardman and Sasse [11] studied information management across tools, specifically
files, email and Web bookmarks and long term issues relating to personal information
management. They found that the nature of acquisition varied between tools from
manually done in files and bookmarks to uncontrolled in email. File management strategies
also varied from file on creation to file on completion of task or during a “spring cleaning.”
Similar patterns were found in email management where they found no filers who do not
organize and instead search their email, frequent filers who file as emails come in and spring
cleaners who file their email from out of their inbox at intervals.

Martin and Jose [37] reveal the other software that facilitates information management
includes information retrieval system prototypes such as Fetch, which adopts the concept
within an information-seeking environment specifically designed to provide users with
the means to better describe a problem they don’t understand. Along with Fetch, another
piece of software, created by Bao et al. [3], FolderPredictor, works in the same problem
space. FolderPredictor applies machine learning algorithms to the observation of users’
opening and saving of files, analysis of document content, and the making of context-aware
predictions to reduce the amount of time users spend locating their files.

Henderson [22] looked at the attributes knowledge workers use to structure their
information into hierarchies. Genre, task, course, topic, time, and person were the most
frequently used folder types. Some of the dimensions like person, source, topic, time and
file type can be automatically supported by software whereas genre, course/task and security
are unsupported by software automation and must be done manually. Lerman, Gazen,
Minton, and Knoblock [33] used automated grammar generation, a automated technique to
group data into hierarchies, to semantically mark up data-filled websites and tag them based
on heuristics. This method labeled automobile sales data columns correctly 64% of the
time, but inconsistent data formats and similarly formatted but semantically unrelated fields
remain as hurdles to greater accuracy.

CALO Stardust 51

Other parts of information management include the use of email. An interesting example
is the U.S. Government investigation into the Enron collapse which resulted in a large
corpus of email messages analyzed by Klimt and Yang [30]. They found that while most
users make use of folders to organize their email, it is also important to classify messages by
thread and relationship to other messages, a difficult problem for a computer if human users
fail to use ‘reply’ to maintain thread relationships. They also discovered trends in the data
that indicate useful ways of classifying messages using the message body and from fields.

Besides organizing information, applications like email take on multiple roles of
information management. Bellotti, Ducheneaut, Howard and Smith [5] recognized the
transition of email as a task management tool supporting to dos, ongoing correspondence,
delegation and receiving of work. To address the growing complexity of email, they
created Taskmaster, an email system designed for task and project management. In their
research they identified the following seven problems and designed Taskmaster accordingly.
Taskmaster works by “keeping track many concurrent actions (the user’s and the ones
expected from others), making important things salient amongst less important items,
managing activity over time (keeping track of threads of activity and discussions), managing
deadlines and reminders which can be associated with other content, collating related items
and associated files and links, application switching and window management, and getting a
task oriented overview rather than a glance through scrolling or inspecting folders.”

Some similar functionality already exists in CALO. Its front end, IRIS, is the interface
that integrates all the different components of CALO’s intelligent agent system for the user
to operate. Cheyer, Park, and Giuli [12] summarized the concept of semantic desktops,
intelligent knowledge management and systems for augmenting the performance of human
teams and how IRIS was designed with components borrowed from existing semantic
desktops and knowledge management software.

Conley and Carpenter [14] presented Towel, an intelligent to do list manager developed
under CALO, is another tool somewhat similar to Taskmaster that handles task
management with direct communication with the user. A style of digital communication
between the user and Towel is vital to Towel’s operation and training, and instant
messaging’s model of interruptions (opening a chat window and playing sounds), status
information for different contacts, contact list (strikingly similar to the look of a to do list),
and flexibility to carry out either rapid human-to-human dialogs or lax conversations (such
as hiding the chat window until a more appropriate time) provides an ideal framework for
the workings of a to do list. Also, the chat windows limit the number of operations the user
can undertake, and they also make users directly manipulate an operation using commands,
so to avoid dealing with anything outside of the context of the task.

As for action items that are verified and managed by Towel, they reach the user again in
the form of notifications and reminders. In Effective Interaction Strategies for Adaptive
Reminding, Weber and Pollack [40] discuss that a robust reminding system should consist
of a motivating justification, attention to reminder granularity, user’s preferred signal,

CALO Stardust 52

and machine learning techniques. There are two general approaches that these learning
techniques have taken: one called reinforcement learning where the machine refines its
reminding algorithm based on a cumulative reward system, and the other called supervised
learning where the machine selects and presents certain data to the user for training.

Other applications that also share this management space include calendars. Modi et
al. discuss [38] the CMRadar calendar management component is capable of making
autonomous scheduling decisions, negotiating schedules with other users and agents, and
prioritizing existing meetings to determine how to resolve scheduling conflicts. CALO’s
calendar component, PTIME, is an agent-based scheduler that learns, as Berry et al. [9]
discussed in their paper A Personalized Calendar Assistant. Some features include the
ability to work with the user to solve infeasible scheduling problems, automated preference
learning and automatic inferences about when best to interrupt the user, backed by active,
procedural, and especially reinforcement learning techniques. Later, Berry et al. [8]
discusses the PTIME system is organized around the principle that people dislike giving
up control over their schedules, whether to a software agent or otherwise. Since users
often have widely differing preferences and practices in regards to time management,
PTIME is designed to support and augment, rather than replace, the user’s natural
processes. Berry, Myers, Uribe, and Yorke-Smith [6] built this scheduling agent based on
soft constraint-solving, allowing the system to autonomously create goals and reason about
user commitments. They suggest that good constraint-based scheduling algorithms to
handle scheduling already exist, but inherent uncertainty in user schedules requires even
more robust responses to dynamic schedule requirements if a satisfactory system is to be
fashioned.

Both of CALO’s scheduling assistants, PTIME and Pisces, take the collaborative approach,
called Mixed-Initiative, of balancing scheduling algorithms and human evaluation of
schedule quality and nuances of domain constraints. PTIME is designed to learn and
refine the user’s preference model, whereas Pisces is more focused on providing solution to
very large and complex problems. Berry et al. [7] expressed the hope that the scheduler’s
autonomy will grow with time, and indicated that reinforcement learning may be the best
candidate to make this hope a reality.

Agents
With the expansion in amount of information people deal with on a daily basis and the
advance of AI technology, computer agents are increasingly being incorporated in user
interfaces. The notion of a cognitive agent that dynamically accommodate to user’s work
flow cannot be made possible without AI agent components.

Mike Papazoglou [39] summarized four different types of agents: application, general
business activity, information brokering, and personal agents. Other types of agents
generally fall under these main types. Application agents are application specific agents
that are specialized to a single area of expertise and work cooperatively with other
agents to solve a complex problem in the domain. A procurement agent is an example
of an application agent. General business activity agents take care of typical commerce

CALO Stardust 53

transactions such as business purchasing, billing, parsing information on the Web, and
finding trading partners. Information brokering agents (also referred to as matching
agent) “maintain, update, and access distributed directory services,” as well as performing
advanced navigation services. Brokering agents help service distributors publish their
services and customers to look for these services. Personal agents work for specific users
and their needs “to support the presentation, organization and management of user profile,
requests, and information collections” distributed on the Web and the personal computers.
Personal agents need to monitor and learn user habits and activities and may suggest
better ways of performing these tasks. Examples of personal agents are intelligent tutoring
systems and Web browsing assistants.

All computer agent designs must be designed with theoretical considerations and practical
concerns to be successful. Through her study on interaction between users and cooperative
AI agent that can initiate communication, monitor events and perform tasks, Maes [35]
raised important issues related to topics such as agent personification, mental models, styles
of training, privacy of users, and the responsibilities of agent’s actions and transactions.

Kaye and Karam [29] presented a design for distributed cooperating knowledge based
assistants that emulate the behavior of human office assistants. These assistants cooperate
with each other to complete tasks initiated by the user and interact with conventional office
systems such as databases and message systems. The purpose of the agents is to relieve
office workers from having to learn and use a large variety of systems or having to integrate
tools to build high level applications.

Rich and Sidner [41] stated that autonomous agents should be governed by the same
principles that underlie human collaboration and communication during shared tasks.
Computer agents have varying degrees of autonomy determined by the granularity of the
task and user’s needs. Usually, the user of the agent decides how much of a task to delegate
to the agent. Alternatively, multiple-agent systems might identify different components
of a task and delegate them to other agents inside the system. In a more interesting case,
Maheswaran, Tambe, Varakantham, and Myers [36] discussed the concept of adjustable
autonomy—the ability of an agent to decide when to cede control to a human user or to ask
for confirmation. Schurr, Varakantham, Bowring, Tambe, and Grosz [42] examined the
adaptation of Isaac Asimov’s laws of robotics to teams of autonomous or semi-autonomous
agents. They found that, perhaps contrary to expectation, rigidly following human orders at
all times leads to degradation in agent team performance and an increased, not decreased,
likelihood of bringing harm to humans. This effect can be mitigated by communicating the
agents’ misgivings with orders so that users can suggest alternatives. More research needs to
be done to understand miscoordination costs among groups of human users and agents or
in situations with uncertain knowledge states.

As for agent training, computer agents could possibly be trained in a similar manner as
human assistants to human assistants. Agents can be trained explicitly, by observation and
imitation, and by receiving positive and negative feedback from the user. The challenge is
for agents to learn correct sets of information and provide enough feedback to the user so

CALO Stardust 54

that they could un-train incorrect assumption. Tambe et al. [44] discussed a set of semi-
autonomous personal software agents termed “electric elves” placed in a work environment
resulted in increased efficiency but also in several large social and work flow breakdowns
when the user was unable to correct the agents’ faulty assumptions.

Kozierok and Maes [31] point out that both memory-based learning and reinforcement
learning approaches would allow users to build up trust with the agent as it learns the user’s
habits, making suggestions and predictions, coupled with explanations and confidence levels
for the user to verify. Empirical testing indicates that the user-agent pair is more effective at
the given task than a pair of human users.

Garera and Rudnicky [20] discussed an agent designed to help users create weekly summary
documents by making inferences from raw data as opposed to finished text. Despite this
difficulty, a system trained on hand-classified data helped users complete the summary
task in 22% less time over the course of the study. Unfortunately, automatic classification
was less precise, leading the authors to suggest direct instruction, information synthesis,
and active information acquisition as future supplements to improve the system. Tomasic,
Zimmerman, and Simmons [45] aimed to create an agent that could help users find and fill
in forms in complex corporate knowledge bases. Using natural language processing, and
user-agent feedback loop system, the agent was able to retrieve the correct mini-form 80% of
the time, an acceptable rate given the difficultly that humans have with this task.

To do lists prove to be a challenge to intelligent user interfaces, as presented by Gil
and Chklovski [13] in terms of having to map users’ natural utterances to internal task
representations, anticipate minor and preparatory tasks to accomplish users’ tasks, to
determine the context of the tasks and know its own limits, and to know when task
automation is desirable. The structure of BEAM includes the syntactic parsing of the user’s
natural language in reference to several repositories of external and internal organization
knowledge, and the collaboration with other agents (such as SPARK) within the CALO
architecture in order to execute automated tasks.

The CMRadar agent presented an integrated component of Outlook and provided a novel
interface for explaining its scheduling decisions to the user. It also established an interesting
paradigm for multi-agent interaction—how agents communicate with each other entirely
through emails. Modi and Veloso [38] also demonstrated multi-agent scheduling and
rescheduling—how an agent takes into account the density of another user’s schedule to
access the difficulty of scheduling a meeting with that person.

With regard to transfer of knowledge inside a single or between multiple agents, Marx,
Rosenstein, Kaelbling, and Dietterich [16] discuss that knowledge transfer is profoundly
complicated because the decision boundaries for different tasks exist in different feature
spaces. Through an experiment where they observed the processing of two separate
tasks, they found that while a machine can find the model of the first task to predict the
parameters of the second, this only happens accurately if the tasks were generated from a

CALO Stardust 55

common source and existing in the same domain.

Multimodal interfaces
Multimodal interfaces—that is, the use of multiple modalities such as speech, gestures,
written commands, etc.—have long been considered prime candidates for the interfaces
of agents such as CALO. Several authors have explored the various strategies and
ramifications of providing multimodal input, as well as specific opportunities that lend
themselves particularly well to multimodal interfaces. Lunsford, Kaiser, Barthelmess,
and Huang [34] described a set of “extrinsic costs” that are incurred when humans, who
naturally interact multimodally, are constrained to unimodal computer interfaces. These
include the need to over-specify or re-specify input to satisfy the computer, and the overhead
of the interface misinterpreted user behavior. They also discussed ways that multimodal
interfaces can reduce or eliminate these costs.

Huang and Oviatt [23] showed that multimodal input is often sequential rather than
simultaneous, and that the choice of sequential or simultaneous input is very consistent
within users. Some users were also observed to consistently choose unimodal methods of
input even when multimodal input was available. Further, Krause, Siewiorek, Smailagic,
and Farringdon [32] showed that physiological information such as stress level and
movement patterns can be used to predict interruptability and determine the context of the
user’s interaction with a wearable computer. The authors also made the point that non-
intrusiveness and minimal active training are both essential features of a successful context-
aware system.

Kaiser [27] explores new methods to supplement speech recognition by combining it
with handwriting analysis rather than lip-reading and relying on mutual disambiguation
techniques to acquire out-of-vocabulary words. In baseline test, detection rate of new
words was 100% with greatly improved error rate and accuracy metrics; however, the
test data set was too small to make any definitive conclusions . Kaiser et al. [28] created
Charter, a system developed to support remote collaboration. Charter used multimodal
sketch recognition, vision based body-tracking, and speech/writing recognition for minimal
intervention on work practices. In this system, the inputs can be displayed to distributed
members in other locations. Charter can learn new terms used by the group and build
semantic interpretations based on interaction .

Biehl and Bailey [10] studied comparing how well three classes of interfaces, textual, map,
and iconic, support application management during realistic, collaborative activities in a
multiple-device environment (MDE) and found that users preferred and performed better
with the iconic interface due to its more comprehensive visual and spatial representation.

In another paper, Kaiser [25] discusses the SHACER (Speech and HAndwriting
reCognizER) software’s capabilities of learning new terms dynamically from single human-
to-human interactions during multi-party meetings, applying knowledge of persist across
related meetings, and determining the semantics of handwritten abbreviations. Lastly,
Kaiser, Demirdjian, et al. [26] demonstrated the collaborative creation of Gantt scheduling

CALO Stardust 56

chart using multimodal interfaces including gesture recognition, handwriting recognition,
natural speech processing and body tracking.

Research summary
From our research, we have identified several areas of key research interest relating to
CALO and many insights from previous work in these areas. In particular, we see that
current collaborative technology can be disruptive to the very collaboration it is meant to
support, and that interruption management may play a key role in mitigating this effect.
We also note that people tend to leverage existing technologies such as email and instant
messaging and overload them to take on new responsibilities and tackle new tasks. Agents
like CALO must take this into account and seek to leverage existing technologies like these
itself.

We have also discussed several extant examples of cognitive agents, some of which have
been deployed and observed in the field. Agents clearly fall into many different categories,
all of which behave somewhat differently. The design and implementation of an agent must
take into account social as well as technological factors, since agents often take an active
role in their users’ social environment. We also see several different approaches to human-
agent interaction, with varying degrees of autonomy. We also observe differences in mental
models and training styles, and varied approaches to the degree of personification expressed
by the agent. We note further that multimodal interaction is of central importance to CALO
and other cognitive assistants; research indicates that multimodality can solve or reduce the
impact of many of the problems we have discussed, by reducing or eliminating many of
the extrinsic costs of interacting with a computerized agent. Multimodality also has direct
relevance to collaboration, since a multimodal interface can integrate much more tightly
into a highly collaborative setting with minimal intrusion.

Much of this research was an interesting exploration of how collaboration is managed in a
professional environment and what an agent could be capable of, but it was still unclear to
us how this would apply to our target user group in the context of their work. We therefore
embarked on a series of user studies to supplement this research, which is described in the
next section.

b. Contextual design

User pool justification
To understand the needs of CALO’s target user group, overburdened knowledge workers, we
looked at two user types: assistants and executives. Executives fit the demographics of busy
professionals who face the complexities of dealing with multiple projects and people at any
given time. Assistants are a secondary user group identified because of their relationship
with and importance to the primary target user group, executives. The assistant’s job is also
to focus on the work flow; therefore, they are better able to describe the mechanics of their
work whereas executives focus on a high-level view and tend to disregard irrelevant details.
Finally, in order to understand the use of CALO by people with either substantial training

CALO Stardust 57

or experience using the system, we obtained data from the CALO developers. Data from
these individuals not only provided us valuable insights into how CALO is incorporated
into users’ actual work practices but also the perspectives from which different developers
approached the problem domain.

After extensive focus setting sessions, we came up with two main areas of focus to direct our
contextual inquiries: first, how do people collaborate on the job and what software supports
this? And second, what mental model should CALO support to meet user needs?

Contextual inquiry overview
To collect data on our user groups, we conducted contextual inquires to obtain insights and
breakdowns about their work flow. Contextual inquiry is a method in which the researcher
goes to the user’s workplace to learn and understand his or her work in the context in which
it lives. After a contextual inquiry is conducted, the entire research group meets to create
models of the data collected. There are 5 models: flow, cultural, sequence, artifact and
physical, which are created to reflect different, but important parts of the user’s work. The
flow model captures the responsibilities and work processes in the user’s job. The cultural
model records influences that come from groups or organizations that the user perceives
onto themselves. The sequence model documents the steps and procedures the user takes
to accomplish his or her tasks. Artifact models are representations of actual documents
that the user uses in his or her work flow. Lastly, the physical model is a map of the user’s
physical workspace to capture where the user works and its effect on the user work flow.
These models are created for each individual user and then consolidated by user type to
gather insights about the user group rather than individuals and their details.

Our contextual inquiries
We conducted 14 contextual inquires over a three month period with our three user groups:
assistants, executives and CALO developers. Within the 14 contextual inquiries, there was
some overlap between executives who were also developers.

Consolidated user models
After gathering a large amount of data at the granularity of a single CI user, we consolidated
the models that we generated in order to visualize the data at the level of a user archetype.
In this way, we are able to factor out the idiosyncrasies of individual users and design from
more general trends that will support our user base as a whole. Since CALO must serve a
number of very different users in different ways, we decided in this case that it would be
most instructive to consolidate our models into three user archetypes—the developer, the
administrative assistant, and the executive. These specific archetypes were motivated both
by the groups of target users specified by SRI and our modeling process. Each archetype
provides us with a varied set of insights and requirements for our design. They also served
to motivate our final focus.

SRI developers
Our trip to SRI’s main campus in Menlo Park, CA, provided us with both a number of
insights into the ways in which end users might interact with specific parts of CALO and a

CALO Stardust 58

high-level overview of the ways in which the developers envision integration for CALO as
a whole. However, as indicated on our developer flow model, their interaction with CALO
was generally more limited and artificial than one would hope to see with an end user.
Typically, a developer would focus on training and using the part of CALO that they were
actively developing, more as a debugging procedure than as an actual user. As such, their
interactions were more hypothetical than the sort of data typically observed in contextual
inquiry.

While the data gathered was most instructive from a CALO-demonstration perspective, it
was interesting to note that developers tended to struggle with the components of CALO
that they were not actively developing. This indicates that in its current form, CALO
requires too much low-level knowledge to operate, a problem that we hope to address
through our observations of less technical users in the field.

Administrative assistants
During the consolidation process, we found that while the cultural, physical, sequence,
and artifact models were consistent among all assistants, the work flow models differed to
such a great extent as to imply the existence of two archetypes. The differences centered
around whether the assistant was fully responsible for a small number of executives or
was responsible in a more limited way for a larger number of lower-level employees. We
named these archetypes the secretary and the coordinator, respectively. Once we made
this distinction, we were able to draw a number of important insights from our completed
models.

Constant interruptions. Our first interesting discovery is the observation that while assistants
are constantly interrupted, elimination of their interruptions is not a viable goal for CALO.
Instead, we see that these interruptions are an integral part of a work flow that is based
around serving a large number of people for relatively short amounts of time (Fig. 1).
Thus, instead of reducing these interruptions, we should focus on ways in which to support
sequences that are resilient to interruption.

Waiting for others. Another work flow aspect that leads to a number of breakdowns is the
necessity of waiting for external information. Commonly, this information comes from
people, not databases, so the assistant is required to wait for the provider to actually get
around to responding to their request (Fig. 2,3). The end result of this waiting is to fragment
work sequences and cause the assistant to handle many tasks in parallel. This makes
task prioritization difficult since it is not possible to simply follow one task through to
completion.

Because of the difficulty of prioritizing tasks and a need for flexibility, the most common
practice is to keep these tasks either on paper or simply in the mind, a set up that is prone
to errors (Fig. 4). The problem is amplified for coordinators who have to deal with an even
larger number of constituents who may be distributed across the office or further. Ideally,
CALO will be able to serve as a repository for these sorts of short, pending tasks.

CALO Stardust 59

Extra responsibilities. The next insight, taking on responsibilities outside of one’s job
description, appeared with almost every assistant interviewed. It seems counter-intuitive to
think of going outside of one’s job description as an intrinsic quality of being an assistant,
but the reasons behind such a phenomenon are equally as interesting. Over the course of
working, assistants gain knowledge in some specific domains such as purchasing or making
travel arrangements. This knowledge makes them a resource to employees for whom they
are not directly responsible.

Interestingly, the executives for whom the assistants are responsible seem to encourage this
behavior, “lending out” their assistants to perform tasks for their clients and office mates
(Fig. 3). The cultural tendency of many assistants to be unable to turn down requests for
help also exacerbates this propensity, which at times leads to feelings of being overwhelmed.
CALO probably cannot directly support outside responsibilities, but there exists an
interesting parallel between lending out one’s assistant and skill transfer by the CALO agent.

Desire for perfect knowledge. The insights discussed so far all relate to aspects of the assistant’s
experience that greatly increase their work load and level of stress. As such, assistants are
typically highly overwhelmed, and develop coping strategies to deal with this. By far the
most prevalent is to seek “perfect knowledge” of the work of which they are a part. We
observe that assistants try to know everything that is transpiring in their realm of influence,
whether or not it is useful or relevant to them at that moment, due to their perception that
they are the “last line of defense” for those who depend upon them (Fig. 3). They perceive
that if they fail to take the appropriate actions in response to any external event, no one
else will be able to correct their mistake before it has dire consequences. This perception
also motivates the assistant to double-check everything they themselves do, to ensure that
nothing has slipped through the cracks. CALO, acting as a repository for organizational
knowledge, can both support this desire explicitly and reduce the cognitive load on the
assistant.

Trust over time. In general, the executive and assistant relationship is one of increasing
trust and responsibility over time (Fig. 3). Assistants tend not to be explicitly trained,
firstly because there is insufficient time, and second because it is not always clear what the
assistant should be trained to do. Instead, we typically see an assistant’s functions expanding
organically over time with increasing autonomy for them to manage items such as their
executive’s schedule and travel arrangements. This relationship definitely ties to the concept
of adjustable autonomy in CALO, and warrants further exploration.

Frequent use of databases. One notable difference between secretaries and coordinators is
the tendency of coordinators to interact with databases on a regular basis. Therefore, this
interaction likely results because coordinators are responsible for supporting a larger number
of people than secretaries, and databases facilitate handling many employees. Breakdowns
arise because many coordinators are not particularly technical, and they treat these
databases as “black boxes.” Further, assistants tend to duplicate effort when asked to input
transfer paper data into the database (Fig. 2). CALO’s task learning component would likely
be useful in reducing the burden on coordinators interacting with databases.

CALO Stardust 60

Consistent support. A final insight from our data on assistants is that while the executives
they support are very different, assistants tend to support them in consistent ways. Some
common activities are scheduling meetings, handling traveling arrangements, managing
financial transactions, and providing reminders (Fig. 5). It may be most advantageous to
design CALO to support assistant work flows because the applicability of such an approach

C
o

n
s
o

lid
a
te

d
 S

e
c
re

ta
ry

 F
lo

w

S
e

c
re

ta
ry

- k
e

e
p

 b
o

s
s
's

 s
c
h

e
d

u
le

- m
o

n
ito

r b
o

s
s
's

 e
m

a
ils

- tra
c
k
 b

u
s
in

e
s
s
 fi

n
a

n
c
e

s
 fo

r
b

o
s
s

- a
rra

n
g

e
 tra

v
e

l fo
r b

o
s
s

- b
rie

f b
o

s
s
 o

n
 e

v
e

n
ts

- s
c
h

e
d

u
le

 a
n

d
 in

fo
rm

 th
o

s
e

w

h
o

 in
te

ra
c
t w

ith
 b

o
s
s

- b
rie

f th
o

s
e

 in
 p

ro
x
im

ity

B
o

s
s

- a
tte

n
d

 m
e

e
tin

g
s

- h
o

s
t m

e
e

tin
g

- in
itia

te
/re

s
p

o
n

d
 to

c
o

m
m

u
n

ic
a

tio
n

s
- s

p
e

n
d

 m
o

n
e

y
- tra

v
e

l

S
c

h
e

d
u

le
m

a
n

a
g

e
rs

 /
c

a
le

n
d

a
rs

O
th

e
r

p
e

o
p

le

B
o

s
s
's

E
m

a
il

S
e

c
re

ta
ry

's
E

m
a

il

R
e

c
e

p
tio

n
is

ts

B
o

s
s
's

a
s
s
o

c
ia

te
s

a
s
k
 to

 re
s
p

o
n

d
 to

a
s
s
o

c
ia

te
's

 re
q

u
e

s
t

g
e

t a
p

p
ro

v
a

l
w

h
e

n
 n

e
c
e

s
s
a

ry

a
d

d
 m

e
e

tin
g

s

a
d

d
 m

e
e

tin
g

s

c
h

e
c
k

p
e

rio
d

ic
a

lly

a
d

d
m

e
e

tin
g

s

a
s
k
 to

 s
c
h

e
d

u
le

m
e

e
tin

g
s

c
h

e
c
k

c
h

e
c
k

m
o

n
ito

r

re
q

u
e

s
t

in
fo

rm
a

tio
n

g
iv

e
 re

q
u

e
s
te

d
in

fo
rm

a
tio

n

e
m

a
il

a
s
k
 to

m
e

e
t

re
q

u
e

s
t

in
fo

n
o

tify
 a

b
o

u
t

a
rriv

in
g

 g
u

e
s
ts

m
e

e
tin

g
s
 c

a
n

 c
o

n
fl
ic

t

s
e

c
re

ta
ry

 d
o

e
s
n

't k
n

o
w

 a
b

o
u

t th
e

s
e

 m
e

e
tin

g
s

c
a

u
s
e

s
 in

te
rru

p
tio

n
s

 n
o

t p
a

rt o
f th

e
ir d

u
tie

s

lo
ts

 o
f s

p
a

m
s

s
p

a
m

s

[F
ig

u
re

1
]

2
3

Figure 1

CALO Stardust 61

S
u

p
p

o
rt O

rg
a

n
iz

a
tio

n
s

W
o

rk
e

rs

B
o

s
s

A
s

s
is

ta
n

t
- I d

o
u

b
le

-c
h

e
c
k
 e

v
e

ry
th

in
g

 b
e

c
a

u
s
e

 th
e

re
 a

re
 s

o
 m

a
n

y
 th

in
g

s
 to

 tra
c
k
 a

n
d

 I

fo
rg

e
t.

- I u
s
e

 p
a

p
e

r fo
r v

is
u

a
l re

m
in

d
e

rs

- I'm
 o

v
e

rw
h

e
lm

e
d

 w
ith

 th
e

 a
m

o
u

n
t o

f w
o

rk

- I c
a

n
't s

a
y
 n

o

- I u
s
e

 e
m

a
il a

 lo
t b

u
t it's

 n
o

t a
lw

a
y
s
 re

lia
b

le

- I'm
 o

v
e

rw
h

e
lm

e
d

 b
y
 th

e
 a

m
o

u
n

t o
f e

m
a

il I h
a

v
e

- S
c
h

e
d

u
lin

g
 m

e
e

tin
g

s
 is

 tim
e

-c
o

n
s
u

m
in

g
 a

n
d

 d
iffi

c
u

lt

- I n
e

e
d

 to
 b

e
 in

 th
e

 lo
o

p
 fo

r e
v
e

ry
th

in
g

I n
e
e
d
 to

 g
ive

 yo
u

sta
tu

s u
p
d
a
te

s

I n
e
e
d
 yo

u
r a

p
p
ro

va
l

!
I'll h

a
ve

 to
 w

a
it

I w
a
n
t to

 m
a
ke

 yo
u
r life

 e
a
sie

r.

I w
a
n
t to

 ke
e
p
 yo

u
 o

rg
a
n
ize

d
.

If I d
o
n
't re

m
in

d
 yo

u
, n

o
 o

n
e
 e

lse
 w

ill.

I'll lend you out.

B
e m

y guard against irrelevancies.

H
andle m

y calendar.

M
y trust for you increases over tim

e.

Y
o
u
'll kn

o
w

 h
o
w

 to
 d

o
 th

is.

!
I'll in

te
rru

p
t yo

u
 co

n
sta

n
tly

I'll g
e
t a

ro
u
n
d
 to

 it.

!
Y
o
u
'll h

a
ve

 to
 w

a
it

I'll g
e
t b

a
ck to

 yo
u
 w

h
e
n

I h
a
ve

 w
h
a
t yo

u
 w

a
n
t.

!
Y
o
u
'll h

a
ve

 to
 w

a
it

C
o

n
s

o
lid

a
te

d
 C

u
ltu

ra
l M

o
d

e
l —

 A
s

s
is

ta
n

t

[F
ig

u
re

2
]

2
4

Figure 2

CALO Stardust 62

Arm's reach

C
a
b
in

e
t

(S
to

re
s
 lo

n
g

-te
rm

 p
ro

je
c
ts

)

“N
o
w

” s
ta

c
k

“W
a
itin

g
” s

ta
c
k

S
ta

p
le

r

W
ritin

g
 u

te
n
s
ils

D
e
s
k
 c

a
le

n
d
a
r

(w
ith

 w
ritte

n
 n

o
te

s
)

S
tic

k
ie

s
(e

v
e

ry
w

h
e

re
)

In
 b

o
x

W
a
s
te

b
a
s
k
e
t

A
s
s
is

ta
n
t P

h
y
s
ic

a
l M

o
d
e
l (C

o
n
s
o
lid

a
te

d
)

fnord

[F
ig

u
re

4
]

2
6

Figure 3

Workers

Other coordinators
in same field

Support
Organizations

Request
contingent
information

Coordinator
- Arrange travel for workers

- Handle financial transactions
- Data entry and lookup

- Schedule event-based meetings
- Synchronize invested parties

Exchange information

Request
contingent
information

Air grievances

Give
status

updates

Give information
for database

Input information
for workers

Executives /
Accountants

Request
authorizations
and contingent

information

emaill
message

Causes waiting

Duplicates effort

Database
“black-box”

Gives
approval

Causes waiting

Access information
and reports

Send
approvals

Causes waiting

CALO Stardust 63Figure 4

CALO Stardust 64

Activity Intent Abstract Step

Schedule

Meeting

Trigger: gets request for

meeting
Determine meeting

constraints ex. Time, date,

people

Look up or email appropriate

people, check boss' schedule

Ensure venue availability

Check room scheduling

database

Ensure participant

availability

Email participants or check

schedule if available

have to wait for responses

 no centralized database

 out of date datebase

Trigger: key participant is

unavailable

Cancel meeting

Email participants or remove

from calendar if available

Trigger: meeting impending
Make sure

meeting

happens Remind about meeting

Email participants and walk

into boss' office to remind

them

Activity Intent Abstract Step

Determine

travel

possibilities

Trigger: someone needs to

travel

Determine travel constraints

(when, how long, where)

Look up event information

online communicate with

traveler

Gather information

Contact travel agent or travel

websites

Negociate with traveler

Email or present options to

traveler

Schedule travel Request funding

Fill out a form and submit to a

database or accountant

Readjust schedule

reschedule meetings if

applicable

Consolidated Secretary/Coordinator model

[Figure 5] 27

Figure 5

CALO Stardust 65

Build itinerary

prepare/consolidate

documentation and send to

traveler

Travel wrap up Manage reimbursements

Trigger: employee has receipts

if employee kept receipts

Gather receipts, fill out forms

and forward to database of

accountant

Activity Intent Abstract Step

Manage

financial

transaction

Trigger: gets request for

financial transaction

(purchase, reimbursement,

payment)

Collect information

Receive artifacts that justify

the transaction

artifacts may be incomplete,

cause further steps to get all

information

Request authorization

Submit a request for

authorization through email or

database

Notify accountant Enter into database

[Figure 5] 28

CALO Stardust 66

would extend to a large number of fields, whereas designing for a specific type of executive
has a lower generality.
Executives
Decentralized information. Information applicable to the executive is typically spread across
many different repositories, and it exists in many different forms (Fig. 6). Many executives
view their assistants as useful for collecting and distilling all information into one form that
is easily digestible. CALO seems well suited to collecting information from a diverse number
of repositories, so it may prove useful to support visualization of this information.

Buffering work styles. The executives interviewed each had different preferred tools and styles
of working. They expect their assistants to act as a buffer between their preferences and
those of others with whom they interact. It is more important that assistants learn their
executives’ styles of work than their actual job description (Fig 7). In fact, we see executives
desiring to bring their assistants with them to new jobs for exactly this reason. CALO has
this portability—the ability to learn and maintain the executive’s preferences is paramount.
Learning to handle a large number of data formats is a foreseeable problem that would
certainly need to be addressed at some point in the future.

Collaboration is fundamental. As we interviewed higher level executives, we noticed that
their jobs get more service-based. Typical work requirements include creating reports and
presentations, setting requirements, and reading large amounts of email (Fig. 6). These
sorts of activities require communication among parties who are often physically separated.
CALO already has some facilities that support collaboration, such as meeting annotations
and presentation generation, yet it can be better integrated to support executive work flows.

No common sequences. We recognized that supporting the nature of the executives’
work is not as important as supporting the underlying communication between them
and other parties. Any non-specific, repeated sequence represents an inefficiency in the
executive’s work flow because such repetitive tasks should be within the responsibility
of their assistants. As such, the sorts of sequences that CALO would have to support for
executives would necessarily be domain-specific. Thus, CALO would have to be designed
with this domain knowledge in mind, although ultimately it may be possible to make CALO
customizable by an expert user.

CALO Stardust 67

Executive

- Prepare presentations

- Attend meetings

- Express domain knowledge

- Represent project or organization

- make policy decisions

- make large purchases

- meet high level deadlines

- oversees/manages project

- organizes/filters email

Email

Spam

Calendar

Database

Checks daily

Gets reportsBusiness Oversight

(committees,

managers, trustees,

partners)

Reports to

Send requirements to

Secretary

- holds/organizes information

- accommodate bosses

preferred methods/ work

habits

- learns executives decision

making strategies

Notifies new schedule items

Asks for approval

Gets schedule

Get briefings

 information is decentralized, secretary doesn’t always know

Gives reminders/info

Ask to schedule meeting

 Difficult to do with large group

Schedule meetings

Checks

Schedule meetings

Clients

- sponsor projects

Makes point requests

Business

Associates

Give project requirements

Request materials

EmployeesMake authorizations

[Figure 6] 29

Consolidated Executive Flow model

Figure 6

CALO Stardust 68

S
ta

k
e

h
o

ld
e

rs
(custom

ers, organization,
etc.)

E
m

p
lo

y
e

e
s

A
s

s
is

ta
n

t
E

x
e

c
u

tiv
e

I w
a

n
t to

 s
e

e
 w

h
a

t's
 re

le
v
a

n
t n

o
w

.
A

 lo
t o

f m
y
 e

m
a

il is
 a

 w
a

s
te

 o
f tim

e
.

E
m

a
ils

 a
re

 d
is

tra
tc

in
g

.
I lik

e
 d

o
in

g
 it "m

y
 w

a
y
"

I c
a
n
't tra

in
 y

o
u
 e

x
p
lic

itly

I w
a
n
t y

o
u
 to

 le
a
rn

 m
y
 p

rio
ritie

s

Y
o
u
 n

e
e
d
 to

 d
o
 th

in
g
s
 m

y
 w

a
y.

W
e w

ant to

retain autonom
y

!
W

e do things

w
ithout telling you.

You m
ust conform

to our preferences

!
O

ur preferences are

not your preferences

E
x
e
c
u

tiv
e
 C

o
n

s
o

lid
a
te

d
 C

u
ltu

ra
l M

o
d

e
l

[F
ig

u
re

7
]

3
0

Figure 7

CALO Stardust 69

Focus
These insights, taken together, serve to inform and support the direction and focus of
our design process. In particular, we see many opportunities based on our research for
improving and augmenting the time management portion of CALO. Additionally, we
intend to explore ways of bringing together all of CALO’s knowledge and learning abilities
to support the problems we have identified related to time management. By learning what
users are doing at the moment, what they should be doing, and what they will likely be
doing in the future, CALO can help users to prioritize the tasks they need to perform, keep
track of tasks that may depend upon external factors, such as those that require waiting for
other people. This approach will improve the adaptability of CALO’s time management
features while simultaneously reducing the cognitive load on end users. We also intend to
explore ways of having CALO adapt to changing user priorities, and provide non-invasive
support and suggestions. Lastly, we plan to search for methods of enhancing, rather than
replacing, existing collaborations between executives and their assistants.

c. Personae

Personae are personifications of the user archetypes that our research identified. They
exist to present characteristics of the user models in a form that is easier to think about and
design for.

CALO Stardust 70

Janine is an adminstrative assistant at Gaither & Associates, LLP, a medium-sized law firm in

Boston, Massachusetts. Her job is to assist her boss in handling travel arrangements, arranging

meetings, and handling purchasing. She goes into the office at 8:30am, and usually leaves

around 6:30pm, or whenever she finishes all the work that her boss requires her to do for that

day. She has worked for her boss for the past 4 years, and sometimes calls him “Bobby.”

Job Description

Life Story
Janine grew up in Atlanta, GA. She attended Agnes Scott College, a national liberal arts

college for women. She received an associate’s degree in English, and was planning on

pursuing a bachelor’s degree when she decided to quit school and get married. While she had

some side retail jobs at Woolworth during her college years, she became a full-time housewife

and mother for the next 15 years. When her two kids were just toddlers, her husband’s job

was relocated to Boston, so the entire family moved to Massachusetts. When her children

entered high school, she decided to re-enter the work force and found a job as an assistant at

a law firm. She is not entirely computer literate, but she had great organizational skills and

eventually picked up the technical knowledge she needed for her job.

Janine
“I can’t say no.”

“I need to know everything.”

“I’m old school.”

Female, 47 years-old

Lives in Chelsea, MA

Upper Middle Class

Makes $46,000/yr.

Drives a 2003 Toyota Camry

About Janine

18

Figure 8

CALO Stardust 71

Richard
“I don’t have time for anything irrelevant.”

“I need to concentrate on my work.”

“I can’t leave until this is done.”

Male, 41 years-old

Lives in Chicago, IL

Upper Class

Makes $127,000/yr.

Drives a 2005 Mercedes E450

About Richard

Richard is a business consultant for Fantus, LLP, a consulting company that handles

corporate site selections in Chicago, Illnois. He often travels to sites, visits client companies,

accompanies his clients to the sites, and holds meetings with them and his colleagues. His

schedule is often unpredictable, and it requirces him to stay in his office until his work is

done. He relies heavily on his secretary to arrange his frequent travel.

Job Description

Life Story
Richard grew up in Toledo, Ohio. He received his MBA degree at the University of

Michigan, and his first job was being a assistant supply chain manager at Gillette in

Cincinnati. He got married and had one daughter. He accepted a job offer from Fantus, so

his entire family relocated to Chicago. After a few years, he and his wife filed for a divorce

due to his pressures at work, and now he sees his daughter twice a month. Richard maintains

a healthy lifestyle, on top of working 60+ hour weeks.

19

Figure 9

CALO Stardust 72

Sharon
“I can’t say no.”

“I wish I had enough time to help everyone.”

“I can’t think about my job linearly.”

Sharon is a coordinator at Lifehouse Incorporated, a charitable organization that helps

people with developmental disabilities. She mainly coordinates payroll, supplies, and travel

arrangements, especially when the organization sends employees out to attend conferences.

She begins her day at 7:00am, and leaves strictly at 3:00pm so that she can pick up her son

from school.

Job Description

Life Story

Sharon grew up in Santa Cruz, CA, and attended the University of California, Berkeley,

where she majored in Economics. At her first job, she worked at a bank as a customer service

agent in San Rafael. She got married, and eventually quit her job when she gave birth to

her son. She spent the next 5 years as a full-time mother, then picked up a part-time job

at Lifehouse when her son entered pre-school. She started off as a receptionist, and after

a couple of years, she became a full-time coordinator for the organization. Sharon is very

devoted to her work, and also to her family. Sometimes she has to bring her son into the

office with her, because there simply is not enough time for her to complete her work and take

care of her family at the same time.

Female, 33 years-old

Lives in San Rafael, CA

Middle Class

Makes $36,000/yr.

Drives a 2004 Honda Accord

About Sharon

20

Figure 10

CALO Stardust 73

d. Use case analysis

A use case is a general scenario of how a particular sort of user might use a software system.
Use cases are valuable for their ability to reveal system requirements and user roles, and
also for solidifying nebulous foci into well-defined system capabilities. Since collaboration
is among our foci, all three types of users: secretaries, coordinators, and executives appear
in our use case diagram (Fig. 8). Some of the use cases with which these users are involved
and which fall within our focus area include scheduling and being reminded about meetings,
adding to-do items and being notified about them, and interacting with CALO’s perception
of the user’s priorities; all of these will be priorities for prototyping.

Assistant

Executive

Coordinator

Our Little Corner of Calo

Schedule
Meetings

Add To-do
Items

Get Reminded
about Meetings

Observe
System To-do

Priorities

Change
System To-do

Priorities

Receive
Notifications

View Expanded
To-do List

[Figure 8] 31

Use Case Diagram

Figure 11

CALO Stardust 74

2. Ideation and design

a. Brainstorming: initial ideas

After gathering data regarding users’ work flows,
work habits, and their tools, the CALO Stardust
team made an affinity diagram of design ideas
that could potentially address the needs and
support the breakdowns of our target users. This
brainstorming directed us to two broad directions
for the project: one, to design a system that supports
the user’s task management, and two, to design a
way for CALO to support the collaboration between
CALO users (particularly executives and their
assistants and subordinates). Task management
would include components that handle task
prioritization, notifications, task visualization,
activity documentation, and task organization.
User collaboration, on the other hand, would
support components that allow users to schedule
meetings, task delegation, and other explicit forms of
collaborative communications.

We attempted to clarify the design ideas from the
affinity diagram so that they could work together in
a larger, coherent system. Our team realized from
brainstorming various ideas and concepts that at
any time, the user needs to have certain information
visible at all times and information available by
request. We also noted that the ability to modify
the system would be important so that users would
not feel commanded by the system. It also became
apparent that having these components in a sidebar
on the desktop was the best way
to present them to the users. With
this in mind, we individually
and as a group we came up with
several ideas before choosing the
best to pursue.

The team saw that a sidebar would
be a space for quick, at-a-glance
information while information
requested by the user, would have
in-depth detail about the items in

Figure 12

Figure 13

CALO Stardust 75

their sidebar. In response, we formed the idea of the
task viewer which would allow the user to access a
complete set of information about his or her tasks
while the sidebar would only show the important
details of the task. More detail about the task
viewer is explained in the features section.

We adapted the concept of the PrepPAK from the
current CALO system and reimagined its role as
a general store of resources pertaining to a task,
an event, a meeting, or any other such piece of
information. The pack window was designed to
closely resemble a folder in Windows Explorer to
provide the user with a familiar interface in which
they could exert full control over the contents of the pack, including additions, deletions,
renames, and
other operations of that sort.

We realized that executives tend to observe their work on a higher level, especially between
different areas of work. Therefore, we created task visualization ideas to help see an
overview of the user’s work. One task visualization called project navigator, shows tasks
grouped by the projects they belong to where the importance of the project is reflected in
the size of the object. The location of each project would depend on their priority with the
center being most urgent. Each project box would show tags, notifications, a few urgent
tasks, and obviously the smaller the project
appears, the less of these details would show
and therefore do not need as much attention.
In the project navigator users would be
able to see very generally what they need to
attend to right now, and at the same time, get
an overall sense of what other projects they
are neglecting.

A similar concept, called the “task
relationship cloud,” creates a cloud of
tasks where the tasks’ size relates to it’s
importance, and the location refers to it’s
priority. However, the task relationship
cloud would only show tasks instead of
the projects they belong to. The distances
between them would indicate the levels of
their association and arrows would show
the tasks’ dependencies. For instance, if one
task could not be completed until another
task is done, then the task relationship would

Figure 14

Figure 15

CALO Stardust 76

visualized the chain of events that must happen before
a task can be started.

 A third, slightly different, way of visualizing tasks was
what we called the “Spiral,” where the most urgent
tasks would be placed in the outermost ring of a
“spiral of tasks,” and the least urgent tasks in the inner
curves of the spiral. Also, the size of the tasks would
gradually get bigger (hence showing more details) the
more urgent they are. In the spiral, the user can easily
gauge how many more tasks are left in their workday,
and when they see the end of the spiral, then it means
the user is almost done with his or her tasks. It was
an unconventional way of representing tasks, and our
team had jokingly called it the “spiral of despair.”

After lengthy discussions, our team decided to focus more on the task management
direction and less on collaboration, simply because of time constraints for our project, and
also because we had more ideas and interest in this particular topic. We crafted certain
requirements that our new design should fulfill, and a list of task management features
that could support these requirements. Narrowing down our initial ideas, we agreed that
the basic design requirements were to allow the user to change priorities, see relationships
between tasks (and task details), manage their time, receive notifications, and access to both
user and system activity documentation. The ideas were eliminated or merged into general
feature categories: project-based priorities, task relationship cloud, the “spiral,” learning log,
dynamic schedule, notification center, notification modalities, (detailed) task viewer, project
navigator, and a to-do list on the sidebar.

Figure 16

CALO Stardust 77

P
roject-

based
P

riorities
(S)

T
ask

Spiral of
D

espair
(S/R

)

L
earning

L
og

(R
)

D
ynam

ic
schedule
(S/R

)

T
ask

V
iew

(R
)

P
roject

N
avigator

(R
)

T
o-

do’s
onside
bar
(S)

C
hanging

priorities
w

eak
strong

w
eak

w
eak

strong
w

eak
strong

Seeing
relationships
(betw

een
tasks)

strong
w

eak
w

eak
w

eak
strong

G
etting

context
(ie: w

hat
project is
this for?
w

ho is
involved?
anything not
tasks)

w
eak

strong
w

eak
strong

w
eak

T
im

e
w

eak
strong

w
eak

strong
w

eak
w

eak
w

eak
w

eak
N

otification
w

eak
w

eak
w

eak
strong

strong
strong

strong

Figure 17

CALO Stardust 78

In this scenario, the screen displays what the system thinks is the best task for the user to do
next. Executives thought that a sort by priority would be useful; however, giving options
was seen as preferable to presenting a top choice. Coordinators or assistants were not as
receptive as executives because they did not appreciate the idea of the system telling them
what to do. The coordinators felt that they were quite capable of prioritizing tasks and did
not need a system to do it for them. However, giving several options was acceptable because
it made the user feel like he or she was the one choosing the task rather than the computer.

Suggestions for Better Time-management

b. Concept validation

Concept Validation is a method used after the ideation phase to confirm whether the ideas
generated from the research reflect the users’ actual needs. The method involves showing
target users storyboards of situations identified in the research and solutions developed from
the ideation phase. We created the following storyboards to test ideas of time management,
collaboration, information management, system automation, training and others. Concepts
were validated on four executives and three administrative assistants, and the following is
their feedback:

What should I do now? Figure 18

Figure 19

CALO Stardust 79

Seeing resources associated with a task

This storyboard demonstrates the ability to collect all the documents or resources related
to a conference, trip, meeting or task in one place. All of our executive and coordinators
agreed that the ability to gather relevant resources easily would be very useful for them.

Receiving reminders

This scenario tests the idea of helping users get tasks done in the remaining time available
without spending extra time and effort on deciding what to work on. Executives did not
readily identify with this need since they did not want their free time “filled in” with tasks by
the system, and estimating duration of a task is difficult making the accuracy questionable.
Some coordinators however were more open to the idea of estimating duration possibly
because their tasks are similar or more repetitive. Overall, coordinators accepted the
scenario as long as they still maintained control over the system.

For this concept, we wanted to see if users would like to be notified of important or timely
events. Among executives, we found that many liked the idea of being reminded but had
varying degrees of intrusion that they were willing to accept. Coordinators had mixed
reactions toward reminders based on personal preferences and work styles.

Figure 20

Figure 21

CALO Stardust 80

Information at your finger tips

This is a simple interface concept of placing a sidebar that cannot be covered by other
windows, on the users screen at all times. Both coordinators and executives were not
enthusiastic about having a sidebar visible at all times. Users did not think there was much
information worth being on the screen at all times and taking up valuable screen real estate.
However, they were willing to use a minimizable or smaller version of a sidebar to access
information easily and hence our creation of the minibar later on.

Access to the system’s reasoning

This concept tests the idea of having access to CALO’s artificial intelligence reasoning.
Executives thought that explicit AI reasoning like it’s statistics analysis would not be very
helpful. However contextual information, like what document or piece of information the
AI based its decision on would be enough to understand its ‘thought process.’ Coordinators
had a similar response however one also answered that she would not have time to deal
with things such as the checking the AI’s reasoning even if it did something she did not
understand.

Figure 22

Figure 23

CALO Stardust 81

Getting back up to speed

This scenario tests the idea of recovering from an interruption. Most of the executives
agreed with this concept, but noted that getting the right level of granularity would be
crucial. The information presented must be more precise than “what task was I working
on,” but less precise than “what characters did I just type”. Coordinators did not see
interruptions as detrimental to their work and therefore did not identify as much with this
need.

Seeing pending tasks

The concept of pending tasks was identified in our contextual inquires as when users were
unable to continue working on a task until they received something from a colleague. In
this scenario, the user is able to check why she hasn’t filed an expense report and the system
shows her she is still waiting on a package slip from her supplier. Both executives and
coordinators responded that the idea of pending tasks happens frequently and that it would
be helpful to easily keep track of them.

Figure 24

Figure 25

CALO Stardust 82

Taking time to train the system

CALO is a system with a sophisticated artificial intelligence that can accomplish more
with training. This scenario shows how explicitly training the system would make it learn
quicker. An alternative scenario of the same concept had implicit training where the user
did not tell the system rules or preferences. Instead, the system learned from the users’
actions and inferred it’s reasonings. Executives and coordinators preferred implicit rather
than explicit training. Users thought it would be difficult to explain the reasoning to a
system and rules would become too complicated. A few were willing to train while setting
up the system, but training was still seen as intimidating and the user might not know what
preferences he or she would want yet.

Letting the system take over your task

In this concept, we were validating whether users would want the system to automate tasks
for them, and to what degree of control over the automation they would want. Overall,
both user groups found automation to be useful as long as there was the opportunity for
user input along the way since few tasks are 100% the same. However, interestingly, one
executive intended to use automation as more of a documentation tool for infrequent tasks
to remind her of the process. Another executive answered that they did not have enough
repetitive tasks to be automated.

Figure 26

Figure 27

CALO Stardust 83

Seeing the progress of work

In seeing the progress of work, the system keeps track of how much has been completed
for the user and what work is left. Executives did not see this feature as useful because their
work is complicated and they didn’t need that level of detail. Coordinators had a similar
reaction where they did not see a need for it.

Capturing loose items to do

Here we were trying to validate the concept of the system automatically documenting small
tasks that cannot be completed at the moment and are traditionally written on post-its,
scraps of paper or just kept in memory. Executives and coordinators found this very useful
since it is easy to forget small tasks you can’t get to right now.

Figure 28

Figure 29

CALO Stardust 84

Seeing calendar changes made by others

This scenario presents the idea of allowing select people to be able to view and edit a
user’s calendar. The user would be able to see all changes and confirm to approve them.
Although both user groups found this idea to be useful, it has been implemented by several
calendaring agents already with varying levels of success. Success usually depends on
having the entire organization using the same calendaring tool consistently.

3. Evaluative user testing

a. Think-alouds with paper prototypes

Gathering all the results from concept validation, our team started to work out the details
of our design—how to integrate all the different components together, how the sidebar
interface looks, and how users would interact with different parts of the system. We decided
that within the sidebar there would be five panes: notification center, task list, schedule,
relevant information, and access to applications.

 Once we created paper prototypes of these panes, we ran our first round of think-aloud
user studies on non-target users. We used non-target users to test for usability issues and for
any conceptual inconsistencies. The user test gave users a background story in which they
were an executive in a large company. The study included a list of tasks that involved editing
tasks, checking their schedules, receiving notifications, and finding resources. Below are
the results from our first and second round of think-alouds on non-target users. From these
results we drafted a few changes to our paper prototypes to do a third and fourth round of
implementation user tests.

Figure 30

CALO Stardust 85

Start CALO Task Viewer PAK for Finishing Expens...

Start CALO Task Viewer PAK for Finishing Expens...

Think-aloud Study I: Sample Screen (used the normal sidebar)

Think-aloud Study II: Sample Screen (used the mini-sidebar)

Figure 31

Figure 32

CALO Stardust 86

Think-Aloud Study I Results

Users:

Tasks Users Completed Without Major Problems

1. Notification Center: Handling incoming emails
- Opening the grouped category in notification pane for incoming
emails (e.g., 3 new emails) and seeing the details

- Reading the full email by double clicking on the notification to
open up the email from the inbox

2. Notification Center: Dismissing a notification
- Clearing the notification by clicking the “x” was easy to
understand

3. Task Pane: Adding a new task from the text field
- Users understood the concept of hitting “enter” or clicking on
the add icon

4. Task Pane: Marking a task as pending and making a
note on what it’s pending on

- There was some confusion about what “pending” meant

- Solution: Change to “On Hold” (still testing)

5. Task pane: Minimizing & expanding groups

6. Relevant information pane: Correcting a misplaced
file

- Surprising 2/3 users figured out to right click and train CALO
rather easily; one tried to drag it out of the pane, which we also
see as a valid action and are considering to implement

7. Task Viewer: Filtering and clearing filters

Years of Computer Use Work mainly on
Computer

Use digital calendar
or task manager

12

“Forever”

A few years

Yes

Yes

No

No, but familiar with
Google Calendar

Google Calendar

No

User 1

User 2

User 3

CALO Stardust 87

- One person had trouble clearing the filter but maybe he
misunderstood the task description; other than that, it seemed
intuitive

Problematic Areas & Tentative Solutions:

1. Schedule pane: Adding a new event
from a block view

- Most users didn’t understand that they had to
go the agenda view in order to add an event that
does not occur on the current day

- It was unclear for some users how to get to the
agenda view; user would try to use the zoom bar
to get to the next day

- Solution: Add an “add” button on both the
block and the agenda views; make the zoom
so that when users zoom out enough block view is not legible, it
changes to the agenda view ajutomatically; similarly, when they
are in the agenda view and want to go back to the block view, they
could zoom in or click the block view icon (support multiple ways
of switching between the views)

2. Task Pane: Finding files to work on
- All users went to the relevant information pane instead of
opening the file from the expanded task pane; this is an acceptable
work around but still not optimal considering the they didn’t really
understand what the purpose of the relevant information pane

3. Task Pane: Grouping tasks
- Users didn’t understand they could drag things around (could be a
paper prototype issue)

- There was some confusion of what grouped task is: sub tasks or
just grouped?

- Solution: Present clear affordance that tasks are draggable with
changed cursor tip to a cursor hand (later on the digital prototype);
also, the group should provide the option of adding a title for the
grouped tasks

4. Relevant Information Pane: Finding the automation
function (when filling out a form)

- Most users didn’t think to look at the relevant information pane;
some went to application pane at the bottom after they were unable
to find it in other places; this is a secondary way to accomplishing
this task but still not as intuitive

CALO Stardust 88

- Solution: Since “relevant information” is not a very helpful
name (what does it mean to be relevant?) we changed it to
“CALO Suggestion” pane to indicate the pane contains things
that CALO can do for the user; also CALO can inform users that
there are actions that CALO can automate for the user

5. Task Viewer: Tagging a task
- Users wanted to do this action on the sidebar (only possible in
the task viewer; some had trouble finding the task viewer because
they didn’t think such a thing existed)

Open-ended Comments from Users:

1. Icons in the application pane didn’t make sense
- Solution: provide tool tips and possibly labels for icons

- Didn’t understand there are more tasks when task categories are
minimized or only showing a few tasks

- Solution: have “show all N’s…” at the bottom of the list when
it’s only showing a few

2. Not clear how to get to the task viewer

Other Changes we made after Think-aloud I

1. Confusion over closing the expanded task and deleting an item

- E.g., when tasks show details, “x” seems to indicate “close”
instead of deleting the task

- Solution: use a trash can icon for deleting and X for closing

2. CALO Suggestion Pane
- Change the name from “Relevant Information” pane to “CALO
Suggestions” pane

- It should show files and actions associated with the focused
window

- When it’s focused on a pane in a sidebar, show instructions of
how to use that particular pane on the sidebar

CALO Stardust 89

Think-Aloud Study II Results

Years of Computer Use Work mainly on
Computer

Use digital calendar
or task manager

12

15

18

16

15

Yes

Yes

No

Yes

Yes

Google Calendar and
Wikis

Google Calendar

No

No

No

User 4

User 5

User 6

User 7

User 8

Users:

Tasks Users Completed Without Major Problems

1. Notification Center: Handling incoming emails
(same as Think-aloud I)

2. Task Pane: Moving a task to change its priority
- Dragging seems to be alright now after users switched from
using a pen to a real mouse with a paper pointer

3. Task Pane: Marking a task as pending and
adding a note for the reason

- Finding the automation (filling out a form) from the
relevant information pane

- Surprisingly alright, changing the name of the pane possibly
helped

- Some expected the automation to appear on the browser
(or on the file) they are working on

4. Schedule Pane: Gathering resources for an event
(e.g., meeting)

- The new pack icon seems more intuitive

- One user had a lot of trouble
(perhaps he didn’t see the icon)

5. PAK Window: Removing and adding files

Think-aloud II used the mini-bar version of CALO. All panes appear in
the same way except for the notification center.

CALO Stardust 90

6. PAK Window: Finding similar files from
right-clicking

7. Task Viewer: Tagging

- Works well except for User 8 (didn’t understand
tagging; perhaps we should include motivation in
the task script)

8. Task Viewer: Filtering and clearing filters

Problematic Areas & Tentative Solutions

1. Notification Center: Dismissing
irrelevant notification from the minimized
sidebar

- Almost all considered “Growl” going away as
dismissing (“Growl” is a notification application
system; for more information, please refer to
http://growl.info)

2. Schedule Pane: Using the zoom bar to go
to
the next day

- Some zoomed in instead of out to go the next day

3. Task Pane: Grouping tasks
- Some considered starring tasks as grouping; some
would check the completion boxes thinking they are
checkboxes

CALO Stardust 91

Open-ended Comments from Users

1. Wanted to see more direct actions inside task viewer and PAK window

2. Spelling of PAK is confusing; “Sounds like it stand for something”

3. Task viewer should be accessible from a right click in a task pane

4. The mix of desktop and web-based metaphors (star & checkbox)
is confusing

5. Completion box seems too much like checkbox

6. Solution: make completion boxes look more like buttons

Our Comments

1. Putting a new label to indicate that there are more tasks to view if the user expands the group seemed to
have helped a lot

Issues After Think-aloud II

1. Users would not notice the suggested actions CALO can automate when the sidebar is minimized

- Solution: “Growl” when there are actions that can be automated

2. What is the difference between “remove” and “this is irrelevant” in the contextual menu? Former does
not train, the latter does. Is it necessary to provide this differentiation? Would users know the difference?

- Occasions for users wanting to remove files without training CALO: in the case that users get information
from outside of the computer (which CALO cannot track), training would be “confusing” to CALO because
it would try to make assumptions out of existing information IN the computer; it may be inefficient and
possibly harmful to un-train CALO

3. We need to elaborate the interactions from the minimized sidebar more (e.g., what would happen when
they double-click on the icons?)

4. We need to elaborate the interfaces more for stand-alone windows (e.g., PAK and Task Viewer)

CALO Stardust 92

b. Think-alouds with wizard of Oz prototype

We took our findings from the paper prototypes and created an interactive prototype that
employed the method of Wizard-of-Oz to simulate the AI. Users interacted with the sidebar
(the task pane only, for this round of testing) on one computer, while another person used a
wizard on another computer to simulate the system actions, such as adding tasks, changing
priorities, and marking tasks as completed or pending, and so on. We were particularly
interested in this round of testing to see how users would interact with a higher fidelity
prototype where the system would automatically shift tasks around to assist them. We
wanted to know if the movement was noticeable, helpful, or confusing for the system to
intelligently figure out and react accordingly the user’s actions. We gave users a background
story to give them a sense of their work and a series of tasks that required them to interact
with the task pane and an email inbox.

Our next round of user tests with an improved interactive prototype was with our target
users. We felt that there was a big difference in the data collected from target users, because
they understood a lot of the concepts behind our sidebar. They knew what pending tasks
were without much difficulty, and they understood the reason for tasks to move between
subpanes. The idea of task priority also came to them more easily than it did for others,
and they appreciated some of the automatic CALO actions because of the sheer amount of
work they have to handle everyday.

Think-aloud Study III: User side bar Figure 33

CALO Stardust 93

Think-aloud Study III: Wizard-of-Oz controller Figure 34

CALO Stardust 94

Think-Aloud Study III Results
User tests with First Implementation

Years of Computer Use

11

~12 years

~ 10 years

Over 20 years

Computer Usage

Surf the web, check email, use
AIM to talk to friends, research
projects and assignments, share
photos etc.

Email, Internet, school, work,
entertainment, scheduling
events, news, etc.

Email, database entry, web
surfing, paying bills

Homework, e-mail, work,
news, entertainment, etc.

Use digital calendar or task
manager?

Google Calender, post-it notes
on my desk, and hand calender
that I keep in my bag.

Use paper planner and a
calendar on my email

Use a paper schedule book

PDA and an old fashioned
calendar

User 1

User 2

User 3

User 4

Users:

For this Think-aloud, we employed the method of Wizard-of-Oz to simulate the AI. The users were non-target
users that interacted with a sidebar (the task pane only) on one computer. On another computer, a person
simulated the AI by adding tasks, changing priorities, and marking tasks as completed or pending, etc on the
sidebar the user interacted with.

We were interested in seeing how users interacted with a higher fidelity prototype on a computer where the
system automatically moved tasks around for them. We wanted to know if the movement was noticeable,
helpful or confusing for the system to intelligently figure out and react accordingly to what the user is doing on
the computer. We gave users a background story to give them a sense of their work and a series of tasks that
seem appropriate for the position using simplified files and an email inbox.

CALO Stardust 95

Tasks Users Completed Without Major Problems:

1. Adding a new task from a task field
- Either hitting ‘enter’ or clicking on the add icon

2. Understand the tasks are ordered by priority
- Most seem hesitant but tend to think it was ordered by
importance or due dates which is similar to priority

3. Be able to expand tasks to see details

4. Understand the concept of completed tasks

Adding a new task

Expanded task to show details

Completed sub-pane always shows 2 tasks
in the normalized mode. Maximizing
or clicking on “show all 7” will show all
completed tasks. Minimize button will
show no completed tasks.

CALO Stardust 96

Problematic Areas & Tentative Solutions:

1. Noticing the order of the task added by the
system
2. Noticing the system adding new tasks

- Some did, others didn’t

- No one figured out where they were coming from (answer:
when an email was read, the task was added) but two said it
is a cool idea after we told them.

- Solution: differentiate Calo-added tasks vs. user-added tasks
so that users can easily glance which tasks were added by the
system and quickly check to make sure they are correct.

3. Noticing the system move the priority up for
task you start working on (when they are not on
the top)

- Solution: Add numbers next to task to try to encourage the
idea of priority, or explain why the system is moving things
to the top.

4. Be able to detect an added task
- Half of the users thought that the sender of the email added
tasks for the user

5. Understanding the concept of pending tasks
- One thought of them as all the tasks except the one they are
working on

- Some thought they are tasks they decided not to work on at
present (regardless of whether they are waiting on someone
else)

- Solution: Add an option of leaving a note for who it’s
waiting on; Calo can take it out automatically if it detects
pending task is no longer pending when the response comes
in

6. Noticing that pending tasks automatically move
to to-do afterreading an email

Animation of a task changing priorities.

Details of Sales Report task expanded in
the on-hold sub-pane. (Pending task)

CALO Stardust 97

- No one noticed because they were reading an email

7. Noticing the system marking tasks complete
automatically

- No one noticed

- One thought it was useful

- One wanted to “cross out” (aka marking it complete) the
completed tasks herself for satisfaction and keeping track of
what was done and needs to be done (rather than the system
marking them complete)

8. Be able to expand a minimized task category
- Some were ok, some were not

Solution: Have one button in the blade title that collapses or
expands the pane category and keep the link to show more or
less at the bottom of the list (still testing)

9. Being able to expand the collapsed sub-pane (to-
do, on hold or complete) to see the tasks that are
not visible

- Understands the interaction, but doesn’t always think to
click when looking for something.

10. Being able to see the new tasks added that go
below the fold of visibility (less priority)

- There is very minimum feedback currently; tasks are added but
not visible; the number in “show all Ns” is changed

Solution: add an animation that show the task added but
disapearing below the line of visibility

When a task is added with a low priority it
drops below the 4 visible tasks

The completed tasks are minimized now.
The icons to normalize and maximize
were confusing to users

CALO Stardust 98

Open-ended Comments from Users:

1. Was it confusing/disorienting when the system did things on its own?
- Three said yes, two said no (comfortable with similar agents ex. email spam filter)

2. Was it confusing when tasks switched their position on the sidebar?
- Though few noticed when things moved in the task pane, most thought it would be confusing

3. Would you like more control over system actions?
- Most said yes or more information of what the system did

- Some were ok as long as they also could change things

4. Would you like to be notified whenever the system makes a change?
- Most said yes

- One said that would be too much

- It’s hard to say without knowing the frequency of the system making a change (we think)

5. There is no way to differentiate urgency among priority (how much more urgent than
second on the list to the end?)

- Solution: Add a due date next to title of task when collapsed to see urgency at a glance

Other Issues that have come up and Changes We Made after TA III:

Concern over the lack of feedback / control when the system did something
- Even when we explained the notion of notification pane category (calo actions) some users thought that
un-doing the system’s action in notification center is slow and inefficient

Solution: Differentiate Calo-added tasks vs. user-added tasks so that users can easily glance which tasks
were added by the system and quickly check to make sure they are correct

How we are implementing: by marking the tasks added by the system with an orange C
icon which an be dimmed when users want to approve them

The combination filter/add field
- No user noticed that text field was also filtering

- Some got confused (partly because of code bug) that tasks seemed to have disappeared after accidentally
filtering or leaving the text

Solution: Abandon the combination of filter/add field (how? not sure yet.)

CALO Stardust 99

Think-aloud IV results

Tasks users completed without major problems

1. Adding a task
Users were able to find the text field and use the enter key or click the plus button.

2. How to use the notification center
Users understood how to check and interact with the messages in the notification center

3. Concept of grouping
Some users we’re able to easily group items together through drag and drop. Other users did not realize you
could drag and drop and therefore were not able to group them.

4. Understand concept of pending
Users understand the concept of pending, but some expanded the concept to put tasks that are unconfirmed in
the “on hold” section.

5. Seeing/understanding tasks change priority
Most users thought that tasks were ordered by urgency which is a subset of priority.

Problematic areas and tentative solutions

1. Not able to notice notification
Notifications fade in and pulse for a few seconds, but many users did not notice the slight movement.
Solution: In order to capture the user’s attention, we decided to make urgent notifications stay glowed yellow.

2. CALO added a task
Some users did not realize CALO added a task if the task fell below the fold. Tasks fall below the fold when
the subpane is normalized (shows only 4 tasks) and the priority of the task is lower than the top four tasks.
Solution: Show the number of total tasks and how many are currently showing, ex. (4/6) tasks

3. Marking a task as pending
Some users were unsure of what the pending icon meant.
Solution: There were too many things on the pending icon. Simply it by taking off the arrow and animation

4. Understand how to change priority
Some users did not know how to change priority of a task especially if they didn’t realize you could drag and
drop in the interface.

User comments

1. I like having this sidebar, better than maximizing an application, try to read it, it takes me so long

2. In the schedule pane, I definitely want a way to call up a day, and to see THAT DAY and see what’s due

3. Wants CALO to read her emails, see meeting requests, see what scheduling conflicts are there, and

automatically respond to her emails with suggestions to what works if there are conflicts

CALO Stardust 100

c. Heuristic evaluation

Heuristic evaluation is a method to critically examine an interface to make sure it meets
standardized usability principles such as consistency, flexibility and visibility. During
heuristic evaluation, we found several areas of improvements and came up with solutions to
address them.

1. Pending icon difficult to understand
Fix: To clarify the pending or “on hold” icon, we took off the red arrow and animation that
occurred when the user moused over the button.

2. Auto selection of radio button for “due date” when calendar date is selected
Fix: If the user clicks on a date, the “due date” radio button becomes automatically selected.

3. Search bar does not search through tasks in subpanes that are collapsed
Fix: When the user does a search, the subpanes automatically open to show matching
results even in the closed panes.

4. Subpanes may appear to be empty
Fix: Show the number of tasks visible out of the total number of tasks. For example, (4/10)
means 4 tasks showing out of 10.

5. Visual distinction between panes
Fix: Create a coloring theme that makes pane division clearer.

6. Noticing incoming important notifications
Fix: Important notifications will remain highlighted in yellow until the user acknowledges it.

CALO Stardust 101

No. CALO-HE-01 Problem

Name: The pending icon is hard to understand and see clearly

Evidence

Heuristic: User control and freedom

Interface aspect: The mouse arrow is so big that it’s hard to tell what the pending

icon is changed to in its hovered state. The arrow is too small, and not entirely clear.

Severity Rating: 2

No. CALO-HE-02 Problem

Name: Auto selection of radio button for “due date” when calendar date is selected

Evidence

Heuristic: User control and freedom

Interface aspect: Making the user click on the radio button then select a due date

proves too cumbersome.

Severity Rating: 3

No. CALO-HE-03 Problem

Name: Up & down arrows next to the month and year fields on the calendar on the

task pane
Evidence

Heuristic: Consistency and standards

Interface aspect: The up & down arrows seem awkward next to the down arrow for

the drop down menu for month selection. Perhaps a link on the bottom of the

calendar would be better? A link that says “Next month”… right now the up and
down arrows do not enough affordance as to what they are going up and down

through.

Severity Rating: 2

No. CALO-HE-04 Problem

Name: Search bar does not search through tasks in subpanes that are collapsed

Evidence

Heuristic: Flexibility and efficiency of use

Interface aspect: Since the search bar is on top of all subpanes, it is the only way to

search for tasks in all the subpanes. The user may have collapsed a pane just to see

everything else better, and it may not make sense for the search to be limited only to
expanded subpanes.

Severity Rating: 3

CALO Stardust 102

No. CALO-HE-05 Problem

Name: Subpanes may appear to be empty

Evidence

Heuristic: Visibility of system status

Interface aspect: When subpanes are minimized, the user may confuse that fact with

the fact that there are NO tasks under those subpanes. Subpanes should have a
number on the title bar, indicating how many items are in that subpane, irregardless of
what state it is in.

Severity Rating: 3

No. CALO-HE-06 Problem

Name: Drag and drop is a bit difficult

Evidence

Heuristic: Flexibility and efficiency of use

Interface aspect: It would be nice to have a bit more space in between 2 tasks

whenever another task is dragged in between them. Right now it’s slightly difficult to
distinguish between the in between space that the dragged item will go to, or the gray
border around a task.

Severity Rating: 2

No. CALO-HE-07 Problem

Name: Knurling not consistent

Evidence

Heuristic: Flexibility and efficiency of use

Interface aspect: Apparently, the 4 arrow grabbing cursor appears on the top of the

task as well as on the bottom, but there is no knurling on the top when there is
knurling on the bottom. Perhaps the grabbing cursor is sufficient? What is the

purpose of the knurling if you can grab the task somewhere else without the knurling?

Severity Rating: 2

No. CALO-HE-08 Problem

Name: Visual distinction between panes

Evidence

Heuristic:

Interface aspect: Sometimes it is hard to tell when one pane starts and ends because

of the similar coloring. There are divider lines, but the dividers are not very visible.

Severity Rating: 1

CALO Stardust 103

No. CALO-HE-09 Problem

Name: Noticing incoming important notifications

Evidence

Heuristic: Visibility of system status

Interface aspect: When an important notification comes in, it pulses 5 times, but is

still easy to miss.

Severity Rating: 2

No. CALO-HE-10 Problem

Name: Pending dialogue text

Evidence

Heuristic: Match between system and real world

Interface aspect: The dialogue box that comes up after clicking on pending task icon

is more complicated that it should be.

Severity Rating: 2

No. CALO-HE-11 Problem

Name: No shortcuts in adding a new task

Evidence

Heuristic: Flexibility and efficiency of use

Interface aspect: When adding a task in the text field, users cannot specify dates or

other details directly in the text field. Expert users are used to adding multiple fields of

content using a comma (e.g, Google Calendar) and to them, it’s tedious to have to
specify details later after the task is added.

Severity Rating: 2

No. CALO-HE-12 Problem

Name: No clear way to undo an action

Evidence

Heuristic: Flexibility and efficiency of use

Interface aspect: With anything users do on the sidebar, there is no single consistent

way to undo the action.

Severity Rating: 2

CALO Stardust 104

4. Specification Sheet

Normal Sidebar Mini-bar

General

The normal sidebar consists
of three resizable panes (task
pane, schedule pane, and CALO
suggestions pane), and two
unresizable panes (notification
center and icon well).

1. Click on the up diagonal arrow
icon to turn the sidebar into the
mini-bar.

2. Click the down diagonal arrow
on the top to bring the full sidebar
back; click the close icon to close
the system.

3. Single click on an icon will open
that pane.

4. Clicking outside pane will close
pane.

5. Cannot right-click on mini pane
icons.

6. You can only open one pane at
a time.

7. Click the maximize icon on the
top to bring the full sidebar; click
the close icon to close the system.

Notification Center Features

1. The notification center cannot
be collapsed.

2. The default amount of space
for the notification window will
be for 3 notifications. If more
notifications come in, the window
will grow to fit them.

3. There are 3 types of notifications
- Urgent emails
- CALO actions
- CALO added a new task

General

CALO Stardust 105

- CALO has taken a task off
hold
- CALO has finished
automation, etc.
- Reminders

4. Emails and calo action
notifications both group by type
when they are under a certain
priority. When there is an urgent
email or calo action it will break
from its group and have an
important badge placed on the
icon.

5. Notifications in the Reminders
category never group since they are
usually time sensitive.

6. Grouped notifications have
email “badges” which are small
icons that show the number of
emails in the group. There are
also important badges that for any
reminders or notification that have
a high enough priority to break out
of a group.

7. Clicking on the “Notification
Center” title bar does nothing.

Normal Sidebar Mini-bar

When a
notification
comes in

1. If the notification is under a
certain priority number, then the
notification fades in.

2. If the notification is over a
certain priority number, then it
pulses yellow a couple times and
stays lit. When attended to (ie.
clicked on), it changes to its proper
color.

3. The high-priority notification
always stays on the top, even

1. When a notification comes in,
a Growl-style pop-up would slide
out of the mini-bar and remains
yellow for two seconds while
the icon on the mini-bar pulses.
After that, the Growl-style pop-up
slides back in and disappears, and
the notification icon would stop
pulsing but remain yellow until the
user clicks on it.

2. If the user clicks on the Growl
pop-up while it is still in view, then

CALO Stardust 106

if it’s not the newest. Any
notification would take itself off
the notification center based on
an AI algorithm that would know
when it’s no longer necessary. For
example, when the start time of a
meeting has passed and there’s no
user activity on the desktop, then
the notification for the meeting
would disappear. Or an email
notification would disappear once
the email is read.

it acts just like a normal-mode
notification, including the ability to
dismiss.

3. A high-priority notification
always stays on the top, even
if it’s not the newest. Any
notification would take itself off
the notification center based on
an AI algorithm that would know
when it’s no longer necessary. For
example, when the start time of a
meeting has passed and there’s no
user activity on the desktop, then
the notification for the meeting
would disappear. Or an email
notification would disappear once
the email is read.

Normal Sidebar Mini-bar

1. Hovering over a notification:
A close icon appears on the right
side of the notification (for both
individual and group notifications).

2. Single-click over a notification:
- If it’s a single notification
(meaning not coalesced),
nothing happens
- If it is a coalesced notification,
then it would expand the
notification, showing each
individual notification (ex:
hover over “6 new emails”
would show the subject line of
each email)
- If it is a highlighted
notification, the highlight will
turn off

3. Double-clicking on a notification
will bring you to an application
associated with your notification
(ex: email client, or task viewer,
etc.).

Interaction
with
Notifications

1. Hovering over a notification
icon: Tooltips appear to show the
name of the notification.

2. Single-click on a notification
icon: only that notification would
open up (ex: if one clicks on the
“C” icon, only the CALO Action
shows, and if it’s a coalesced
group, then all the notifications in
the group would show).

3. Double-click on a notification
icon: nothing happens. Same as
single-click.

4. Right-click on a notification
icon: nothing.

5. When a notification is opened,
right-click on it would bring up a
menu with “Open,” “Delete,” and
then a “Training CALO” category
with “This is incorrect,” “This
is almost correct,” and “More
Training...”

CALO Stardust 107

4. Right-click on a notification:
brings up a menu with:

- Open
- Delete
- “Training CALO” category
with the following:
	 a. This is incorrect
	 b. This is almost correct
	 c. More Training...

6. When a notification is opened,
double-clicking on it will bring you
to an application associated with
your notification (ex: email client,
or task viewer, etc.).

Task pane components

1. Each subpane has 3 states:
collapsed, normal, and expanded.

2. Click the triangle inside a circle
to collapse each entire subpane.
The tasks in a collapsed subpane
are now hidden.

3. The normalized state would
show to-do tasks, on hold tasks and
completed tasks in a ratio of 4:2:2,
multiplied out to fit the entire
height of the pane. Right now, it
shows 4:2:2 regardless of height.

4. The expanded state is set by
clicking on the “show all n” link
at the bottom of each subpane
to show all tasks in the subpane.
Each group’s expanded state would
have a link below the items that
says “Show top #” where “#” is
the normalized number described
above in 3.

5. When the task pane has more
items than space available, a scroll
bar appears.

6. When a task is added by CALO,
a C icon is included in the task.
Clicking on the C icon makes it
grayed out. Clicking on it again
will make it colored again.

General 1. Single-click on the task icon:
opens the task pane.

2. Double-click on the task icon:
opens the task pane (same as single
click).

3. Once the task pane is opened, all
other functions are the same as the
task pane in the normal sidebar.

4. Clicking outside of the mini
sidebar would close any opened
panes.

Normal Sidebar Mini-bar

CALO Stardust 108

7. When a due date for a task is
added, the due date is visible even
when the task is collapsed.

Title task bar 1. Single-click on the expand icon
would collapse/expand the whole
pane.

2. Double-click would open the
task viewer.

Normal Sidebar Mini-bar

Text field 1. Typing in the add text field will
add a new task by pressing enter or
clicking on the “+”

2. Typing in the search field will
filter the task list. To clear the
filter, delete the text or click on th x
button.

3. You can drag documents onto
the add text field to add a task or
drag the document onto the task
pane.

4. Dragging a document onto
a particular task will add it as a
resource to the task.

1. The normal state would has 4
task items.

2. Single-click on the star would
toggle between a star outline and
a solid star. (refer to Gmail or
Towel)

3. Single-click on the Completion
button makes the arrow outline
solid, but once the button is
clicked, the task would be moved
to the “Completed” group.

4. Single-click on the down arrow

To Do
subpane

CALO Stardust 109

of a task would expand the task,
showing its details. Clicking on the
up arrow will collapse the task.

5. Double-click on a task would
bring out the task viewer with that
particular task highlighted and
expanded.

6. Right-click on a task would
bring up a menu with “Delete,”
“Star,” “Mark as complete,” “Put
on hold,” and a “Training CALO”
category with “This is incorrect,”
“This is almost correct,” and
“More Training...”

7. Clicking on the trash can icon
would delete the task.

8. An expanded task would have
the following details:

- Due by field
- Tags
- Put on hold button (moves the
task to on hold)
- Resources related to the task
which include files, emails, etc.
- Add a resource icon.
- Make a pack icon (not shown
or implemented)

Normal Sidebar Mini-bar

1. The normal state holds 2 task
items by default.

2. Right click on a ‘on hold’ task
would bring up

- Delete
- Star
- Mark as complete
- Take off hold
- Training CALO category with
	 a. This is incorrect
	 b. This is almost correct
	 c. More Training...

On Hold
subpane

CALO Stardust 110

Normal Sidebar Mini-bar

1. The normal state has two task
items.

2 Right clicking on a task in the
completed group would bring up

- Delete
- Star
- Mark as incomplete
- Put on hold
- Training CALO” category
with:
	 a. This is incorrect
	 b. This is almost correct
	 c. More Training...

3. Items in the completed subpane
are already checked. Unchecking
the task will push it back to To Do.

Complete
subpane

Task viewer

1. Double clicking on a task in the
side bar will bring up the a separate
window called the Task Viewer
with that particular task expanded
to see the details.

2. Drag and drop doesn’t work
to move tasks around, but it does
work to create groups.

3. Pending and completed are
mixed in with completed tasks, not
separated in groups.

- Completed tasks are identified
by the check mark button filled
in.
- Pending tasks have a pending
status icon

4. Tasks are by default listed by
priority.

5. Grouped tasks looked the same
as in task pane.

1. Clicking on the icon with the
document and magnifying glass
will open the task viewer in a new
window.

General

CALO Stardust 111

Normal Sidebar Mini-bar

1. The left text input box creates
new task.

2. The right text input box allows
you to search through tasks.

3. The row of ‘buttons’ across
the top are filters: deadline, date
added, project, tags, status and
people

- Hovering over a filter button
will make a down arrow
appear.
- Clicking on the text of the
filter button will sort the tasks
by the filter name
- Clicking on the down arrow
opens a menu with options to
filter the list on Ex. people will
have a list of people, clicking
on one will only show tasks
related to that person
- When a menu button is
filtering on a dimension, there
is a check by the category name
to indicate what categories are
being sorted.

4. Clicking on a task expands it
to see its details. There are more
details listed here than in the task
pane.

- Title, date added, due date,
tags, people, etc.
- More resources are listed

5. Clicking on any of the details
will allow the user to edit them ex.
tags or date due.

1. Clicking on the icon with the
document and magnifying glass
will open the task viewer in a new
window.

Task viwer
interaction

1. Right click on the task gives you
the same as the task pane which
varies depending on whether it is
a incomplete, on hold or complete
task. Refer to task pane.

Contextual
menu

CALO Stardust 112

2. Right click on a resource/
document brings up menu with

- Remove document
- Find similar files
- This is incorrect
- This is almost correct
- More training

Normal Sidebar Mini-bar

Schedule components

Schedule pane has two views:
block view and agenda view

- Users switch the view by
either:
	 - Clicking on the agenda
	 and the block icon at the
	 bottom or
	 - Zooming in and out.
	 When in the block view
	 zooming all the way out
	 brings the user to the
	 agenda view.

General

1. View:
- The hours are represented by
horizontal lines

2. Anchoring:
- The schedule is automatically
anchored to one 30 minutes before
the present time (this is why there
is no scroll bar).

3. Zooming:
- The default view is showing 5
hours in the window. Resizing
the schedule pane will allow
it to show more or less at one
time
- Zoom out to view more of the
day
- Zoom in to view fewer hours
- When users zooms out far
(toward -), the view switches to
agenda view

Block view

CALO Stardust 113

4. Events:
- Events are displayed as blocks
of time
- Users can drag the bottom
of the block to change the
duration of events (not
implemented)
- Pack icon is visible when
events have associated
resources

5. Single click:

- Single clicking on events
would open the details of the
event such as starting and
ending time, location, people
and notes. It would also show a
trash can.
- Users can exit the detail view
by clicking anywhere outside
the block.
- Users can click on the texts to
modify information

6. Adding a new event:
- Users can add a new event by
clicking on the “add” button at
the bottom and selecting a time
of the day or
- Clicking on any open area
in the schedule would create
a new block (1 hour default);
then the user can modify length
or title of the event

Normal Sidebar Mini-bar

View:
1. It shows 5 days of schedule in a
list.

2. When the list cannot fit in the
pane, a scroll bar appears.

3. The list contains the starting

Agenda
view

CALO Stardust 114

time, title of each event and a Pack
icon when applicable.

Anchoring:
1. It is anchored to the current day.

Zooming:
1. Zooming in (toward +) would
switch the view to block view.

Events:
1. Events are editable by clicking
on the texts.

Adding a new event:
1. Users can add an event in next 5
days.

CALO suggestions components

1. The CALO suggestion pane will
show files or emails related to the
form and actions the system can
perform. In this case, the CALO
suggestion pane gives contextual or
relevant information and resources
related to the window that the
user is focused on. For example,
if the user has a purchase form in
focus the CALO would be able to
automate this task by filling in the
fields for the user.

2. When a pane in the side bar is
in focus, CALO suggests will give
descriptions and directions on the
actions available in that pane.

General 1. Every time calo suggests has an
available action, the icon will be
colored.

Normal Sidebar Mini-bar

CALO Stardust 115

Right clicking on a document will
bring up a contextual menu:

- Remove document
- Find similar files
- Training CALO” category
with:
	 a. This is incorrect
	 b. This is almost correct
	 c. More Training...

Contextual
menus

Icon well components

1. Task Viewer icon:
Opens the task viewer window

2. Calendar icon:
Opens the user’s own calendar
application

3. Contacts icon:
Lists contacts the system has
collected for the user

4. Email icon:
Opens the user’s email client

5. Automation icon:
Opens automation window for
system to complete a repetitive task
for a user.

6. Learning log icon:
One section lists all important user
actions which are documented
here. Another sections lists all
actions Calo did with the ability to
train or correct based on any past
action Calo took.

7. Preferences icon:
Allows the user to change settings
of sidebar

8. Help icon:
Opens the help window

General

Normal Sidebar Mini-bar

CALO Stardust 116

Pack

Normal Sidebar Mini-bar

A pack is created to automatically
gather all resources into one folder.
Packs can be made for meetings,
tasks and eventually entire days. A
window explorer is on the left hand
side for easy access to documents.

1. View:
Allows the user to select icon, list,
or thumbnail view.

2. Actions
The action buttons are along the
top

- Add
- Remove or remove selected
- Print
- Save

3. Filtering
Filtering works the same was as the
task viewer. Refer to task viewer.

4. Search
A search bar is provided to enter
keywords.

5. Adding files
Files can be added using the Add
action button or by dragging files
into the pack.

6. Removing files
Files can be removed by dragging
them out of the pack window.

Right click on a file brings up a
contextual menu with

- Remove document
- Find similar files
	 - This is incorrect
	 - This is almost correct
	 - More training...

General

CALO Stardust 117

VI.	 Bibliography

1.	 Adamczyk, P.D., Bailey, B.P., A Method and System for Intelligent Interruption
Management. in Task Models and Diagrams, (2005).

2.	 Avrahami, D., Hudson, S. E., QnA: Augmenting an Instant Messaging Client to Balance
User Responsiveness and Performance. in ACM Conference on Computer Supported
Cooperative Work, (2004).

3.	 Bao, X., Herlocker, J., Dietterich, T., Fewer Clicks and Less Frustration: Reducing the
Cost of Reaching the Right Folder. in IUI, (Sydney Australia, 2006).

4.	 Barthelmess, P., Kaiser, E., Lunsford, R., McGee, D., Cohen, P., Oviatt, S Human-
Centered Collaborative Interaction.

5.	 Bellotti, V., Ducheneaut, N., Howard, M., Smith, I. Taking Email to Task: The Design
and Evaluation of a Task Management Centered Email Tool.

6.	 Berry, P., Myers, K., Uribe, T., and Yorke-Smith, N., Task Management under Change
and Uncertainty: Constraint Solving Experience with the CALO Project. in CP 2005
Workshop on Constraint Solving under Change and Uncertainty, (Sitges, Spain, 2005).

7.	 Berry, P., Peintner, B,. Yorke-Smith, N. , Bringing the User back into Scheduling: Two
Case Studies of Interaction with Intelligent Scheduling Assistants. in AAAI Spring
Symposium on Interaction Challenges for Artificial Assistants, (Stanford, CA, 2007).

8.	 Berry, P.M., Gervasio, M., Uribe, T, Pollack, M., and Moffitt, M., A Personalized Time
Management Assistant. in AAAI Spring Symposium Series, (Stanford, CA, 2005).

9.	 Berry, P.M., Gervasio, M., Uribe, T., Myers, K., and Nitz, K., A Personalized Calendar
Assistant. in AAAI Spring Symposium Series, (Stanford, CA, 2004).

10.	Biehl, J.T., Bailey, B. P., Improving Interfaces for Managing Applications in Multiple-
Device Environments. in AVI, (2006), 35-42.

11.	Boardman, R., Sasse, M. Stuff Goes into the Computer and Doesn’t Come Out. in A
Cross-tool Study of Personal Information Management, 2004.

12.	Cheyer, A., Park, Jack, Giuli, Richard., IRIS: Integrate. Relate. Infer. Share. in ICSC
(Galway, Ireland, 2005).

13.	Chklovski, T., Gil, Y., Enhancing Interaction with To-Do Lists Using Artificial
Assistants. in AAAI Spring Symposium on Interaction Challenges for Artificial
Assistants, (Stanford, CA, 2006).

14.	Conley, K., Carpenter, J., Towel: Towards an Intelligent To-Do List. in AAAI, (2006).

15.	Dabbish, L.L., Kraut, R., Fussell, S., Kiesler, S., Understanding Email Use: Predicting
Action on a Message. in ACM Conference on Human Factors in Computing Systems,
(Portland, Oregon, 2005), 691-700.

16.	Dietterich, T., Kaelbling, L., Marx, Z., Rosenstein, M. , Transfer Learning with an
Ensemble of Background Tasks. in NIPS Workshop on Transfer Learning, (Whistler,
BC, 2005).

17.	Ehlen, P., Niekrasz, J., Purver, M., A Meeting Browser that Learns. in AAAI, (2007).

CALO Stardust 118

18.	Faulring, A., Myers, B. A., Enabling Rich Human-Agent Interaction for a Calendar
Scheduling Agent. in Conference on Human Factors in Computing Systems Extended
Abstracts, (Portland, Oregon, 2005).

19.	Fogarty, J., Ko, A. J., Aung, H. H., Golden, E., Tang, K. P., Hudson, S., Examining
Task Engagement in Sensor-Based Models of Human Interruptability. in ACM
Conference on Human Factors in Computing Systems, (Portland, Oregon, 2005), 331-
340.

20.	Garera, N., Rudnicky, A. I., Towards a Personal Briefing Assistant. in AAAI Spring
Symposium, (2005).

21.	Grosz, B., Sidner C. Plans for Discourse. in Intentions in Communication, Bradford
Books/MIT Press, Cambridge, MA, 1990, 417-444.

22.	Henderson, S. Genre, Task, Topic, and Time: Facets of Personal Digital Document
Management.

23.	Huang, X., Oviatt, Sharon L., Toward Adaptive Information Fusion in Multimodal
Systems. in MLMI, (2005), 15-27.

24.	Iqbal, S.T., Bailey B. P., Understanding and Developing Models for Detecting and
Differentiating Breakpoints during Interactive Tasks. in ACM Conference on Human
Factors in Computing Systems, (2007).

25.	Kaiser, E., SHACER: a Speech and Handwriting Recognizer. in ICMI, (2005).

26.	Kaiser, E., Demirdjian, D., Gruenstein, A., Li, X., Niekrasz, J., Wesson, M. and Kumar,
S., Demo: A Multimodal Learning Interface for Sketch, Speak and Point Creation of a
Schedule Chart. in ICMI, (State College, PA, 2004), 329-330.

27.	Kaiser, E.C., Dynamic New Vocabulary Enrollment through Handwriting and Speech
in a Multimodal Scheduling Application: Making Pen-Based Interaction Intelligent and
Natural. in AAAI Symposium Technical Report FS-04-06, (Arlington, VA, 2004), 85-91.

28.	Kaiser, E.C., Barthelmess, P., Huang, X. Demirdjian, D. A, Demonstration of
Distributed Pointing and Referencing for Multimodal Collaboration Over Sketched
Diagrams. in ICMI, (Trento, Italy, 2005).

29.	Kaye, R., Karam, G., Cooperating Knowledge-Based Assistants for the Office

30.	Klimt, B., Yang, Y., The Enron Corpus: A New Dataset for Email Classification
Research. in European Conference on Machine Learning, (2004).

31.	Kozierok, R., Maes, P., A Learning Interface Agent for Scheduling Meetings. in IUI,
(1993).

32.	Krause, A., Siewiorek, D. P., Smailagic, A., Farringdon, J., Unsupervised, Dynamic
Identification of Physiological and Activity Context in Wearable Computing. in IEEE
International Symposium on Wearable Computers, (New York, NY, 2003), 88-97.

33.	Lerman, K., Gazen, C., Minton, S. and Knoblock, C. A., Populating the Semantic Web.
in AAAI 2004 Workshop on Advances in Text Extraction and Mining, (2004).

34.	Lunsford, R., Kaiser, E., Barthelmess, P., Huang, X., Managing Extrinsic Costs via
Multimodal Natural Interaction Systems. in CHI, (Montréal, Québec, Canada, 2006).

35.	Maes, P. Agents that Reduce Work and Information Overload. Communications of the

CALO Stardust 119

ACM, 37 (7). 30-40.

36.	Maheswaran, R., Tambe, M., Varakantham, P., and Myers, K. Adjustable Autonomy
Challenges in Personal Assistant Agents: A Position Paper. Autonomy, 2003.

37.	Martin, I., Jose, J.M., Fetch: A Personalised Information Retrieval Tool. in RIAO,
(2004).

38.	Modi, P.J., Veloso, M., Smith, S., Oh, J., CMRADAR: A Personal Assistant Agent for
Calendar Management. in Agent Oriented Information Systems, (2004).

39.	Papazoglou, M.P. Agent-oriented Technology in Support of e-business. Communications
of the ACM, 44 (4). 71-77.

40.	Pollack, M., Weber, J., Effective Interaction Strategies for Adaptive Reminding. in AAAI
Spring Symposium on Interaction Challenges for Intelligent Assistants, (2007).

41.	Rich, C., Sidner, C., COLLAGEN: When Agents Collaborate with People. in
International Conference on Autonomous Agents, (1997).

42.	Schurr, N., Varakantham, P. Bowring, E., Tambe, M., Grosz. B. Asimovian Multiagents:
Applying Laws of Robotics to Teams of Humans and Agents. AAMAS.

43.	Shen, J., Li, L., Dietterich, T., Herlocker, J., A Hybrid Learning System for Recognizing
User Tasks from Desktop Activities and Email Messages. in International Conference on
Intelligent User Interfaces, (Sydney, Australia, 2006), 86-92.

44.	Tambe, M., Bowring, E., Pearce, J.P., Varakantham, P., Scerri, P., Pynadath, D., Electric
Elves: What Went Wrong and Why. in AAAI Spring Symposium on What Went Wrong
and Why, (Stanford, CA, 2006).

45.	Tomasic, A., Zimmerman, J., Simmons, I., Linking Messages and Form Requests. . in
IUI, (2006).

46. Cassin, B. and Solomon, S. Dictionary of Eye Terminology. Triad Publishing Company,
Gainsville, Florida, 1990.

