CMU logo
Expand Menu
Close Menu

Software-Defined Cooking Using a Microwave Oven

In the Media

a standard microwave is augmented with additional sensors for this project

Despite widespread popularity, today's microwave ovens are limited in their cooking capabilities, given that they heat food blindly, resulting in a nonuniform and unpredictable heating distribution. We present software-defined cooking (SDC), a low-cost closed-loop microwave oven system that aims to heat food in a software-defined thermal trajectory. SDC achieves this through a novel high-resolution heat sensing and actuation system that uses microwave-safe components to augment existing microwaves. SDC first senses the thermal gradient by using arrays of neon lamps that are charged by the electromagnetic (EM) field a microwave produces. SDC then modifies the EM-field strength to desired levels by accurately moving food on a programmable turntable toward sensed hot and cold spots. To create a more skewed arbitrary thermal pattern, SDC further introduces two types of programmable accessories: A microwave shield and a susceptor. We design and implement one experimental test bed by modifying a commercial off-the-shelf microwave oven. Our evaluation shows that SDC can programmatically create temperature deltas at a resolution of 21°C with a spatial resolution of 3 cm without the programmable accessories, and 183°C with them. We further demonstrate how an SDC-enabled microwave can be enlisted to perform unexpected cooking tasks: Cooking meat and fat in bacon discriminatively and heating milk uniformly.

 

Web Link(s)

Original post on the ACM website 

Related People
Haojian Jin, Jason Hong

Research Areas
Sensors